Abstract

Laser-induced autofluorescence (LIAF), combined with multivariate techniques, has been used to discriminate a cataractous lens from healthy lens tissues. In this study, 405 nm and 445 nm were used as excitation sources to induce the autofluorescence. Results show higher autofluorescence intensity in cataractous lens tissues than in healthy ones. Cataractous lens tissues show a red shift of 0.9 nm and 1.2 nm at 405 nm and 445 nm excitations, respectively. Using principal component analysis (PCA), three principal components (PCs) gave more than 99% variability for both 405 nm and 445 nm excitation sources. Based on the three PCs, Fisher’s linear discriminant model was developed. An accuracy of 100% was obtained in classifying the lens tissues using Fisher’s linear discriminant analysis (FLDA). The LIAF technique assisted by PCA and FLDA may be used for objective discrimination of cataractous lens from healthy lens tissues of Sprague–Dawley rats.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced fluorescence combined with multivariate techniques identifies the geographical origin of antimalarial herbal plants

Charles Lloyd Yeboah Amuah, Moses Jojo Eghan, Benjamin Anderson, Peter Osei-Wusu Adueming, Jerry Opoku-Ansah, and Paul Kingsley Buah-Bassuah
J. Opt. Soc. Am. A 37(11) C103-C110 (2020)

Fluorescence spectral imaging for characterization of tissue based on multivariate statistical analysis

Jianan Y. Qu, Hanpeng Chang, and Shengming Xiong
J. Opt. Soc. Am. A 19(9) 1823-1831 (2002)

Visual acuity and color discrimination in patients with cataracts

Z. Langina-Jansone, R. Truksa, and M. Ozolinsh
J. Opt. Soc. Am. A 37(4) A212-A216 (2020)

References

  • View by:
  • |
  • |
  • |

  1. B. Thylefors, “Global data on blindness,” Bull. World Health Org. 73(1), 115–121 (1997).
  2. Y. Xu, X. Gao, S. Lin, D. W. K. Wong, J. Liu, D. Xu, C. Cheng, C. Y. Cheung, and T. Y. Wong, “Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2013), Vol. 16, pp. 468–475.
  3. International Agency for the Prevention of Blindness, “IAPB Report-State of the World Sight 2010,” report (2010) https://www.iapb.org/resources/iapb-report-state-of-the-world-sight-2010/ .
  4. Z. Wang, K. Tangella, A. Balla, and G. Popescua, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16, 116017 (2011).
    [Crossref]
  5. S. Kyei, G. A. Kuffuor, P. Ramkissoon, L. Afari, and E. A. Asiamah, “The claim of anti-cataract potential of heliotropium indicum: a myth or reality?” Ophthalmol. Ther. 4, 115–128 (2015).
    [Crossref]
  6. T. Okano, S. Uga, S. Ishikawa, and S. Shumiya, “Histopathological study of hereditary cataractous lenses in the SCR strain rat,”Exp. Eye Res. 57, 567–576 (1993).
    [Crossref]
  7. C. Ondrej, B. Zdenek, L. Adam, R. Antonin, M. Bretislav, L. Josef, and V. Lenka, “Laser- induced fluorescence spectroscopy in tissue local necrosis detection,” Proc. SPIE 8941, 89411D (2014).
    [Crossref]
  8. G. Fatemeh, P. Parviz, and L. Maryam, “Laser-induced fluorescence spectroscopy for diagnosis of cancerous tissues based on fluorescence properties of formaldehyde,” Laser Phys. Lett. 16, 035601 (2019).
    [Crossref]
  9. G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78, 462–469 (2003).
    [Crossref]
  10. P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence,” Lasers Surg. Med. 21,417–422 (1997).
    [Crossref]
  11. F. H. Zuclich, B. Previc, J. Novar, and P. Edsall, “Near- UV/blue light-induced fluorescence in the human lens: potential interference with visual function,” J. Biomed. Opt. 10, 44021 (2005).
    [Crossref]
  12. R. S. Chuck, R. E. N. Shehada, M. Taban, T. Tungsiripat, P. M. Sweet, H. N. Mansour, and P. J. McDonnell, “193-nm excimer laser-induced fluorescence detection of fluoroquinolonesin rabbit corneas,” Arch. Ophthalmol. 122, 1693–1699 (2004).
    [Crossref]
  13. A. F. Phillips and P. J. McDonnell, “Laser-induced fluorescence during photorefractive keratectomy: a method for controlling epithelial removal,” Am. J. Ophthalmol. 123, 42–47 (1997).
    [Crossref]
  14. D. Karadaglic, A. D. Wood, M. McRobbie, R. Stojanovic, and C. S. Herrington, “Fluorescence spectroscopy of an in vitro model of human cervical neoplasia identifies graded spectral shape changes with neoplastic phenotype and a differential effect of acetic acid,”Int. J. Cancer Epidemiol., Det. Prev. 33, 463–468 (2009).
    [Crossref]
  15. F. G. De Goes Rocha, C. K. C. Barbosa, C. Z. Gomes, C. B. Campanharo, L. C. Courro, N. Schor, and M. H. Bellini, “Erythrocyte protoporphyrin fluorescence as a biomarker for monitoring antiangiogenic cancer therapy,” J. Fluoresc. 20, 1225–1231 (2010).
    [Crossref]
  16. F. R. De Oliveira Silva, M. H. Bellini, V. R. Tristao, N. Schor, D. Vieira, and L. C. Courrol, “Intrinsic fluorescence of protoporphyrin IX from blood samples can yield information on the growth of prostate tumours,” J. Fluoresc. 20, 1159–1165 (2010).
    [Crossref]
  17. I. Kalnina, N. Kurjane, E. Kirilova, L. Klimkane, G. Kirilov, and T. Zvagule, “Correlation of altered blood albumin characteristics and lymphocyte populations to tumor stage in gastrointestinal cancer patients,” Cancer Biomarkers 7, 91–99 (2010).
    [Crossref]
  18. M. Al-Salhi, V. Masilamani, T. Vijmasi, H. Al-Nachawati, and A. P. Vijaya Raghavan, “Lung cancer detection by native fluorescence spectra of body fluids—a preliminary study,” J. Fluoresc. 21, 637–645 (2011).
    [Crossref]
  19. V. Masilamani, V. Trinka, M. Al Salhi, M. Elangovan, V. Raghavan, A. R. Al Diab, and A.-H. A. Nachawati, “New lung cancer biomarker—a preliminary report,” Photomed. Laser Surg. 29, 161–170 (2011).
    [Crossref]
  20. C. Peng and J. Liu, “Studies on red-shift rules in fluorescence spectra of human blood induced by LED,” Appl. Phys. Res. 5, 1–6 (2013).
    [Crossref]
  21. C. L. Y. Amuah, M. J. Eghan, B. Anderson, P. Osei Wusu Adueming, and J. Opoku-Ansah, “Laser induced fluorescence in combination with multivariate analysis classifies anti-malarial herbal plants,” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu2A.71.
  22. J. Opoku-Ansah, M. J. Eghan, B. Anderson, J. Nyarko Boampong, and P. K. Buah-Bassuah, “Laser- induced autofluorescence technique for plasmodium falciparum parasite density estimation,”Appl. Phys. Res. 8, 43–51 (2016).
    [Crossref]
  23. N. A. Maslov, P. M. Larionov, I. A. Rozhin, I. B. Druzhinin, and C. V. Vhernykh, “Laser induced fluorescence spectroscopy of the secondary cataract,” Opt. Spectrosc. 120, 983–987 (2016).
    [Crossref]
  24. S. Tuft, R. Al-Dhahir, P. Dyer, and Z. Zehao, “Characterization of the fluorescence spectra produced by excimer laser irradiation of the cornea,” Invest. Ophthalmol. Visual Sci. 31, 1512–1518 (1990).
  25. E. Sara, B. Anderson, and S. Svanberg, “Compact fibre-optic fluorosensor employing light- emitting diodes as excitation sources,” Spectrochim. Acta Part B 63, 349–353 (2008).
    [Crossref]
  26. T. Okuno, T. Nakanishi-Ueda, T. Ueda, H. Yasuhar, and R. Koide, “Ultraviolet action spectrum for cell killing of primary porcine lens epithelial cells,” J. Occup. Health 54, 181–186 (2012).
    [Crossref]
  27. C. A. McCarty and H. R. Taylor, “A review of the epidemiologic evidence linking ultraviolet radiation and cataracts,” Dev. Ophthalmol. 35, 21–31 (2002).
    [Crossref]
  28. L. Zoris and M. Stojcic, “The influence of ultraviolet radiation on eye,” Prim. Heal. Care 3, 1079–2167 (2013).
    [Crossref]
  29. P. Osei-Wusu Adueming, J. M. Eghan, B. Anderson, S. Kyei, J. Opoku-Ansah, C. L. Y. Amuah, S. S. Sackey, and P. K. Buah-Bassuah, “Multispectral imaging in combination with multivariate analysis discriminates selenite induced cataractous lenses from healthy lenses of Sprague–Dawley Rats,” Open J. Biophys. 7, 145–156 (2017).
    [Crossref]
  30. R. J. Cenedella and C. R. Fleshner, “Selective association of crystallins with lens “native” membrane during dynamic cataractogenesis,” Curr. Eye Res. 11, 801–815 (1992).
    [Crossref]
  31. L. L. David, B. M. Dickey, and T. R. Shearer, “Origin of urea-soluble protein in the selenite cataract, the role of β-cristalline proteolysis and Calpain II. Investigative,” Ophthalmol. Visual Sci. 28, 1148–1156 (1987).
  32. B. Philipson, “Changes in the lens related to the reduction of transparency,” Exp. Eye Res. 16, 29–39 (1973).
    [Crossref]
  33. G. Duncan, I. M. Wormstone, and P. D. Davies, “The aging human lens: structure, growth and physiological behavior,” Br. J. Ophthalmol. 81, 818–823 (1997).
    [Crossref]

2019 (1)

G. Fatemeh, P. Parviz, and L. Maryam, “Laser-induced fluorescence spectroscopy for diagnosis of cancerous tissues based on fluorescence properties of formaldehyde,” Laser Phys. Lett. 16, 035601 (2019).
[Crossref]

2017 (1)

P. Osei-Wusu Adueming, J. M. Eghan, B. Anderson, S. Kyei, J. Opoku-Ansah, C. L. Y. Amuah, S. S. Sackey, and P. K. Buah-Bassuah, “Multispectral imaging in combination with multivariate analysis discriminates selenite induced cataractous lenses from healthy lenses of Sprague–Dawley Rats,” Open J. Biophys. 7, 145–156 (2017).
[Crossref]

2016 (2)

J. Opoku-Ansah, M. J. Eghan, B. Anderson, J. Nyarko Boampong, and P. K. Buah-Bassuah, “Laser- induced autofluorescence technique for plasmodium falciparum parasite density estimation,”Appl. Phys. Res. 8, 43–51 (2016).
[Crossref]

N. A. Maslov, P. M. Larionov, I. A. Rozhin, I. B. Druzhinin, and C. V. Vhernykh, “Laser induced fluorescence spectroscopy of the secondary cataract,” Opt. Spectrosc. 120, 983–987 (2016).
[Crossref]

2015 (1)

S. Kyei, G. A. Kuffuor, P. Ramkissoon, L. Afari, and E. A. Asiamah, “The claim of anti-cataract potential of heliotropium indicum: a myth or reality?” Ophthalmol. Ther. 4, 115–128 (2015).
[Crossref]

2014 (1)

C. Ondrej, B. Zdenek, L. Adam, R. Antonin, M. Bretislav, L. Josef, and V. Lenka, “Laser- induced fluorescence spectroscopy in tissue local necrosis detection,” Proc. SPIE 8941, 89411D (2014).
[Crossref]

2013 (2)

C. Peng and J. Liu, “Studies on red-shift rules in fluorescence spectra of human blood induced by LED,” Appl. Phys. Res. 5, 1–6 (2013).
[Crossref]

L. Zoris and M. Stojcic, “The influence of ultraviolet radiation on eye,” Prim. Heal. Care 3, 1079–2167 (2013).
[Crossref]

2012 (1)

T. Okuno, T. Nakanishi-Ueda, T. Ueda, H. Yasuhar, and R. Koide, “Ultraviolet action spectrum for cell killing of primary porcine lens epithelial cells,” J. Occup. Health 54, 181–186 (2012).
[Crossref]

2011 (3)

M. Al-Salhi, V. Masilamani, T. Vijmasi, H. Al-Nachawati, and A. P. Vijaya Raghavan, “Lung cancer detection by native fluorescence spectra of body fluids—a preliminary study,” J. Fluoresc. 21, 637–645 (2011).
[Crossref]

V. Masilamani, V. Trinka, M. Al Salhi, M. Elangovan, V. Raghavan, A. R. Al Diab, and A.-H. A. Nachawati, “New lung cancer biomarker—a preliminary report,” Photomed. Laser Surg. 29, 161–170 (2011).
[Crossref]

Z. Wang, K. Tangella, A. Balla, and G. Popescua, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16, 116017 (2011).
[Crossref]

2010 (3)

F. G. De Goes Rocha, C. K. C. Barbosa, C. Z. Gomes, C. B. Campanharo, L. C. Courro, N. Schor, and M. H. Bellini, “Erythrocyte protoporphyrin fluorescence as a biomarker for monitoring antiangiogenic cancer therapy,” J. Fluoresc. 20, 1225–1231 (2010).
[Crossref]

F. R. De Oliveira Silva, M. H. Bellini, V. R. Tristao, N. Schor, D. Vieira, and L. C. Courrol, “Intrinsic fluorescence of protoporphyrin IX from blood samples can yield information on the growth of prostate tumours,” J. Fluoresc. 20, 1159–1165 (2010).
[Crossref]

I. Kalnina, N. Kurjane, E. Kirilova, L. Klimkane, G. Kirilov, and T. Zvagule, “Correlation of altered blood albumin characteristics and lymphocyte populations to tumor stage in gastrointestinal cancer patients,” Cancer Biomarkers 7, 91–99 (2010).
[Crossref]

2009 (1)

D. Karadaglic, A. D. Wood, M. McRobbie, R. Stojanovic, and C. S. Herrington, “Fluorescence spectroscopy of an in vitro model of human cervical neoplasia identifies graded spectral shape changes with neoplastic phenotype and a differential effect of acetic acid,”Int. J. Cancer Epidemiol., Det. Prev. 33, 463–468 (2009).
[Crossref]

2008 (1)

E. Sara, B. Anderson, and S. Svanberg, “Compact fibre-optic fluorosensor employing light- emitting diodes as excitation sources,” Spectrochim. Acta Part B 63, 349–353 (2008).
[Crossref]

2005 (1)

F. H. Zuclich, B. Previc, J. Novar, and P. Edsall, “Near- UV/blue light-induced fluorescence in the human lens: potential interference with visual function,” J. Biomed. Opt. 10, 44021 (2005).
[Crossref]

2004 (1)

R. S. Chuck, R. E. N. Shehada, M. Taban, T. Tungsiripat, P. M. Sweet, H. N. Mansour, and P. J. McDonnell, “193-nm excimer laser-induced fluorescence detection of fluoroquinolonesin rabbit corneas,” Arch. Ophthalmol. 122, 1693–1699 (2004).
[Crossref]

2003 (1)

G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78, 462–469 (2003).
[Crossref]

2002 (1)

C. A. McCarty and H. R. Taylor, “A review of the epidemiologic evidence linking ultraviolet radiation and cataracts,” Dev. Ophthalmol. 35, 21–31 (2002).
[Crossref]

1997 (4)

G. Duncan, I. M. Wormstone, and P. D. Davies, “The aging human lens: structure, growth and physiological behavior,” Br. J. Ophthalmol. 81, 818–823 (1997).
[Crossref]

P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence,” Lasers Surg. Med. 21,417–422 (1997).
[Crossref]

A. F. Phillips and P. J. McDonnell, “Laser-induced fluorescence during photorefractive keratectomy: a method for controlling epithelial removal,” Am. J. Ophthalmol. 123, 42–47 (1997).
[Crossref]

B. Thylefors, “Global data on blindness,” Bull. World Health Org. 73(1), 115–121 (1997).

1993 (1)

T. Okano, S. Uga, S. Ishikawa, and S. Shumiya, “Histopathological study of hereditary cataractous lenses in the SCR strain rat,”Exp. Eye Res. 57, 567–576 (1993).
[Crossref]

1992 (1)

R. J. Cenedella and C. R. Fleshner, “Selective association of crystallins with lens “native” membrane during dynamic cataractogenesis,” Curr. Eye Res. 11, 801–815 (1992).
[Crossref]

1990 (1)

S. Tuft, R. Al-Dhahir, P. Dyer, and Z. Zehao, “Characterization of the fluorescence spectra produced by excimer laser irradiation of the cornea,” Invest. Ophthalmol. Visual Sci. 31, 1512–1518 (1990).

1987 (1)

L. L. David, B. M. Dickey, and T. R. Shearer, “Origin of urea-soluble protein in the selenite cataract, the role of β-cristalline proteolysis and Calpain II. Investigative,” Ophthalmol. Visual Sci. 28, 1148–1156 (1987).

1973 (1)

B. Philipson, “Changes in the lens related to the reduction of transparency,” Exp. Eye Res. 16, 29–39 (1973).
[Crossref]

Adam, L.

C. Ondrej, B. Zdenek, L. Adam, R. Antonin, M. Bretislav, L. Josef, and V. Lenka, “Laser- induced fluorescence spectroscopy in tissue local necrosis detection,” Proc. SPIE 8941, 89411D (2014).
[Crossref]

Afari, L.

S. Kyei, G. A. Kuffuor, P. Ramkissoon, L. Afari, and E. A. Asiamah, “The claim of anti-cataract potential of heliotropium indicum: a myth or reality?” Ophthalmol. Ther. 4, 115–128 (2015).
[Crossref]

Al Diab, A. R.

V. Masilamani, V. Trinka, M. Al Salhi, M. Elangovan, V. Raghavan, A. R. Al Diab, and A.-H. A. Nachawati, “New lung cancer biomarker—a preliminary report,” Photomed. Laser Surg. 29, 161–170 (2011).
[Crossref]

Al Salhi, M.

V. Masilamani, V. Trinka, M. Al Salhi, M. Elangovan, V. Raghavan, A. R. Al Diab, and A.-H. A. Nachawati, “New lung cancer biomarker—a preliminary report,” Photomed. Laser Surg. 29, 161–170 (2011).
[Crossref]

Al-Dhahir, R.

S. Tuft, R. Al-Dhahir, P. Dyer, and Z. Zehao, “Characterization of the fluorescence spectra produced by excimer laser irradiation of the cornea,” Invest. Ophthalmol. Visual Sci. 31, 1512–1518 (1990).

Al-Nachawati, H.

M. Al-Salhi, V. Masilamani, T. Vijmasi, H. Al-Nachawati, and A. P. Vijaya Raghavan, “Lung cancer detection by native fluorescence spectra of body fluids—a preliminary study,” J. Fluoresc. 21, 637–645 (2011).
[Crossref]

Al-Salhi, M.

M. Al-Salhi, V. Masilamani, T. Vijmasi, H. Al-Nachawati, and A. P. Vijaya Raghavan, “Lung cancer detection by native fluorescence spectra of body fluids—a preliminary study,” J. Fluoresc. 21, 637–645 (2011).
[Crossref]

Amuah, C. L. Y.

P. Osei-Wusu Adueming, J. M. Eghan, B. Anderson, S. Kyei, J. Opoku-Ansah, C. L. Y. Amuah, S. S. Sackey, and P. K. Buah-Bassuah, “Multispectral imaging in combination with multivariate analysis discriminates selenite induced cataractous lenses from healthy lenses of Sprague–Dawley Rats,” Open J. Biophys. 7, 145–156 (2017).
[Crossref]

C. L. Y. Amuah, M. J. Eghan, B. Anderson, P. Osei Wusu Adueming, and J. Opoku-Ansah, “Laser induced fluorescence in combination with multivariate analysis classifies anti-malarial herbal plants,” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu2A.71.

Anderson, B.

P. Osei-Wusu Adueming, J. M. Eghan, B. Anderson, S. Kyei, J. Opoku-Ansah, C. L. Y. Amuah, S. S. Sackey, and P. K. Buah-Bassuah, “Multispectral imaging in combination with multivariate analysis discriminates selenite induced cataractous lenses from healthy lenses of Sprague–Dawley Rats,” Open J. Biophys. 7, 145–156 (2017).
[Crossref]

J. Opoku-Ansah, M. J. Eghan, B. Anderson, J. Nyarko Boampong, and P. K. Buah-Bassuah, “Laser- induced autofluorescence technique for plasmodium falciparum parasite density estimation,”Appl. Phys. Res. 8, 43–51 (2016).
[Crossref]

E. Sara, B. Anderson, and S. Svanberg, “Compact fibre-optic fluorosensor employing light- emitting diodes as excitation sources,” Spectrochim. Acta Part B 63, 349–353 (2008).
[Crossref]

C. L. Y. Amuah, M. J. Eghan, B. Anderson, P. Osei Wusu Adueming, and J. Opoku-Ansah, “Laser induced fluorescence in combination with multivariate analysis classifies anti-malarial herbal plants,” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu2A.71.

Antonin, R.

C. Ondrej, B. Zdenek, L. Adam, R. Antonin, M. Bretislav, L. Josef, and V. Lenka, “Laser- induced fluorescence spectroscopy in tissue local necrosis detection,” Proc. SPIE 8941, 89411D (2014).
[Crossref]

Asiamah, E. A.

S. Kyei, G. A. Kuffuor, P. Ramkissoon, L. Afari, and E. A. Asiamah, “The claim of anti-cataract potential of heliotropium indicum: a myth or reality?” Ophthalmol. Ther. 4, 115–128 (2015).
[Crossref]

Balla, A.

Z. Wang, K. Tangella, A. Balla, and G. Popescua, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16, 116017 (2011).
[Crossref]

Barbosa, C. K. C.

F. G. De Goes Rocha, C. K. C. Barbosa, C. Z. Gomes, C. B. Campanharo, L. C. Courro, N. Schor, and M. H. Bellini, “Erythrocyte protoporphyrin fluorescence as a biomarker for monitoring antiangiogenic cancer therapy,” J. Fluoresc. 20, 1225–1231 (2010).
[Crossref]

Bellini, M. H.

F. G. De Goes Rocha, C. K. C. Barbosa, C. Z. Gomes, C. B. Campanharo, L. C. Courro, N. Schor, and M. H. Bellini, “Erythrocyte protoporphyrin fluorescence as a biomarker for monitoring antiangiogenic cancer therapy,” J. Fluoresc. 20, 1225–1231 (2010).
[Crossref]

F. R. De Oliveira Silva, M. H. Bellini, V. R. Tristao, N. Schor, D. Vieira, and L. C. Courrol, “Intrinsic fluorescence of protoporphyrin IX from blood samples can yield information on the growth of prostate tumours,” J. Fluoresc. 20, 1159–1165 (2010).
[Crossref]

Breslin, T. M.

G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78, 462–469 (2003).
[Crossref]

Bretislav, M.

C. Ondrej, B. Zdenek, L. Adam, R. Antonin, M. Bretislav, L. Josef, and V. Lenka, “Laser- induced fluorescence spectroscopy in tissue local necrosis detection,” Proc. SPIE 8941, 89411D (2014).
[Crossref]

Buah-Bassuah, P. K.

P. Osei-Wusu Adueming, J. M. Eghan, B. Anderson, S. Kyei, J. Opoku-Ansah, C. L. Y. Amuah, S. S. Sackey, and P. K. Buah-Bassuah, “Multispectral imaging in combination with multivariate analysis discriminates selenite induced cataractous lenses from healthy lenses of Sprague–Dawley Rats,” Open J. Biophys. 7, 145–156 (2017).
[Crossref]

J. Opoku-Ansah, M. J. Eghan, B. Anderson, J. Nyarko Boampong, and P. K. Buah-Bassuah, “Laser- induced autofluorescence technique for plasmodium falciparum parasite density estimation,”Appl. Phys. Res. 8, 43–51 (2016).
[Crossref]

Campanharo, C. B.

F. G. De Goes Rocha, C. K. C. Barbosa, C. Z. Gomes, C. B. Campanharo, L. C. Courro, N. Schor, and M. H. Bellini, “Erythrocyte protoporphyrin fluorescence as a biomarker for monitoring antiangiogenic cancer therapy,” J. Fluoresc. 20, 1225–1231 (2010).
[Crossref]

Cenedella, R. J.

R. J. Cenedella and C. R. Fleshner, “Selective association of crystallins with lens “native” membrane during dynamic cataractogenesis,” Curr. Eye Res. 11, 801–815 (1992).
[Crossref]

Cheng, C.

Y. Xu, X. Gao, S. Lin, D. W. K. Wong, J. Liu, D. Xu, C. Cheng, C. Y. Cheung, and T. Y. Wong, “Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2013), Vol. 16, pp. 468–475.

Cheung, C. Y.

Y. Xu, X. Gao, S. Lin, D. W. K. Wong, J. Liu, D. Xu, C. Cheng, C. Y. Cheung, and T. Y. Wong, “Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2013), Vol. 16, pp. 468–475.

Chuck, R. S.

R. S. Chuck, R. E. N. Shehada, M. Taban, T. Tungsiripat, P. M. Sweet, H. N. Mansour, and P. J. McDonnell, “193-nm excimer laser-induced fluorescence detection of fluoroquinolonesin rabbit corneas,” Arch. Ophthalmol. 122, 1693–1699 (2004).
[Crossref]

Courro, L. C.

F. G. De Goes Rocha, C. K. C. Barbosa, C. Z. Gomes, C. B. Campanharo, L. C. Courro, N. Schor, and M. H. Bellini, “Erythrocyte protoporphyrin fluorescence as a biomarker for monitoring antiangiogenic cancer therapy,” J. Fluoresc. 20, 1225–1231 (2010).
[Crossref]

Courrol, L. C.

F. R. De Oliveira Silva, M. H. Bellini, V. R. Tristao, N. Schor, D. Vieira, and L. C. Courrol, “Intrinsic fluorescence of protoporphyrin IX from blood samples can yield information on the growth of prostate tumours,” J. Fluoresc. 20, 1159–1165 (2010).
[Crossref]

David, L. L.

L. L. David, B. M. Dickey, and T. R. Shearer, “Origin of urea-soluble protein in the selenite cataract, the role of β-cristalline proteolysis and Calpain II. Investigative,” Ophthalmol. Visual Sci. 28, 1148–1156 (1987).

Davies, P. D.

G. Duncan, I. M. Wormstone, and P. D. Davies, “The aging human lens: structure, growth and physiological behavior,” Br. J. Ophthalmol. 81, 818–823 (1997).
[Crossref]

De Goes Rocha, F. G.

F. G. De Goes Rocha, C. K. C. Barbosa, C. Z. Gomes, C. B. Campanharo, L. C. Courro, N. Schor, and M. H. Bellini, “Erythrocyte protoporphyrin fluorescence as a biomarker for monitoring antiangiogenic cancer therapy,” J. Fluoresc. 20, 1225–1231 (2010).
[Crossref]

De Oliveira Silva, F. R.

F. R. De Oliveira Silva, M. H. Bellini, V. R. Tristao, N. Schor, D. Vieira, and L. C. Courrol, “Intrinsic fluorescence of protoporphyrin IX from blood samples can yield information on the growth of prostate tumours,” J. Fluoresc. 20, 1159–1165 (2010).
[Crossref]

Dickey, B. M.

L. L. David, B. M. Dickey, and T. R. Shearer, “Origin of urea-soluble protein in the selenite cataract, the role of β-cristalline proteolysis and Calpain II. Investigative,” Ophthalmol. Visual Sci. 28, 1148–1156 (1987).

Druzhinin, I. B.

N. A. Maslov, P. M. Larionov, I. A. Rozhin, I. B. Druzhinin, and C. V. Vhernykh, “Laser induced fluorescence spectroscopy of the secondary cataract,” Opt. Spectrosc. 120, 983–987 (2016).
[Crossref]

Duncan, G.

G. Duncan, I. M. Wormstone, and P. D. Davies, “The aging human lens: structure, growth and physiological behavior,” Br. J. Ophthalmol. 81, 818–823 (1997).
[Crossref]

Dyer, P.

S. Tuft, R. Al-Dhahir, P. Dyer, and Z. Zehao, “Characterization of the fluorescence spectra produced by excimer laser irradiation of the cornea,” Invest. Ophthalmol. Visual Sci. 31, 1512–1518 (1990).

Edsall, P.

F. H. Zuclich, B. Previc, J. Novar, and P. Edsall, “Near- UV/blue light-induced fluorescence in the human lens: potential interference with visual function,” J. Biomed. Opt. 10, 44021 (2005).
[Crossref]

Eghan, J. M.

P. Osei-Wusu Adueming, J. M. Eghan, B. Anderson, S. Kyei, J. Opoku-Ansah, C. L. Y. Amuah, S. S. Sackey, and P. K. Buah-Bassuah, “Multispectral imaging in combination with multivariate analysis discriminates selenite induced cataractous lenses from healthy lenses of Sprague–Dawley Rats,” Open J. Biophys. 7, 145–156 (2017).
[Crossref]

Eghan, M. J.

J. Opoku-Ansah, M. J. Eghan, B. Anderson, J. Nyarko Boampong, and P. K. Buah-Bassuah, “Laser- induced autofluorescence technique for plasmodium falciparum parasite density estimation,”Appl. Phys. Res. 8, 43–51 (2016).
[Crossref]

C. L. Y. Amuah, M. J. Eghan, B. Anderson, P. Osei Wusu Adueming, and J. Opoku-Ansah, “Laser induced fluorescence in combination with multivariate analysis classifies anti-malarial herbal plants,” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu2A.71.

Elangovan, M.

V. Masilamani, V. Trinka, M. Al Salhi, M. Elangovan, V. Raghavan, A. R. Al Diab, and A.-H. A. Nachawati, “New lung cancer biomarker—a preliminary report,” Photomed. Laser Surg. 29, 161–170 (2011).
[Crossref]

Fatemeh, G.

G. Fatemeh, P. Parviz, and L. Maryam, “Laser-induced fluorescence spectroscopy for diagnosis of cancerous tissues based on fluorescence properties of formaldehyde,” Laser Phys. Lett. 16, 035601 (2019).
[Crossref]

Fleshner, C. R.

R. J. Cenedella and C. R. Fleshner, “Selective association of crystallins with lens “native” membrane during dynamic cataractogenesis,” Curr. Eye Res. 11, 801–815 (1992).
[Crossref]

Gao, X.

Y. Xu, X. Gao, S. Lin, D. W. K. Wong, J. Liu, D. Xu, C. Cheng, C. Y. Cheung, and T. Y. Wong, “Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2013), Vol. 16, pp. 468–475.

Gomes, C. Z.

F. G. De Goes Rocha, C. K. C. Barbosa, C. Z. Gomes, C. B. Campanharo, L. C. Courro, N. Schor, and M. H. Bellini, “Erythrocyte protoporphyrin fluorescence as a biomarker for monitoring antiangiogenic cancer therapy,” J. Fluoresc. 20, 1225–1231 (2010).
[Crossref]

Gupta, P. K.

P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence,” Lasers Surg. Med. 21,417–422 (1997).
[Crossref]

Herrington, C. S.

D. Karadaglic, A. D. Wood, M. McRobbie, R. Stojanovic, and C. S. Herrington, “Fluorescence spectroscopy of an in vitro model of human cervical neoplasia identifies graded spectral shape changes with neoplastic phenotype and a differential effect of acetic acid,”Int. J. Cancer Epidemiol., Det. Prev. 33, 463–468 (2009).
[Crossref]

Ishikawa, S.

T. Okano, S. Uga, S. Ishikawa, and S. Shumiya, “Histopathological study of hereditary cataractous lenses in the SCR strain rat,”Exp. Eye Res. 57, 567–576 (1993).
[Crossref]

Josef, L.

C. Ondrej, B. Zdenek, L. Adam, R. Antonin, M. Bretislav, L. Josef, and V. Lenka, “Laser- induced fluorescence spectroscopy in tissue local necrosis detection,” Proc. SPIE 8941, 89411D (2014).
[Crossref]

Kalnina, I.

I. Kalnina, N. Kurjane, E. Kirilova, L. Klimkane, G. Kirilov, and T. Zvagule, “Correlation of altered blood albumin characteristics and lymphocyte populations to tumor stage in gastrointestinal cancer patients,” Cancer Biomarkers 7, 91–99 (2010).
[Crossref]

Karadaglic, D.

D. Karadaglic, A. D. Wood, M. McRobbie, R. Stojanovic, and C. S. Herrington, “Fluorescence spectroscopy of an in vitro model of human cervical neoplasia identifies graded spectral shape changes with neoplastic phenotype and a differential effect of acetic acid,”Int. J. Cancer Epidemiol., Det. Prev. 33, 463–468 (2009).
[Crossref]

Keely, P. J.

G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78, 462–469 (2003).
[Crossref]

Kirilov, G.

I. Kalnina, N. Kurjane, E. Kirilova, L. Klimkane, G. Kirilov, and T. Zvagule, “Correlation of altered blood albumin characteristics and lymphocyte populations to tumor stage in gastrointestinal cancer patients,” Cancer Biomarkers 7, 91–99 (2010).
[Crossref]

Kirilova, E.

I. Kalnina, N. Kurjane, E. Kirilova, L. Klimkane, G. Kirilov, and T. Zvagule, “Correlation of altered blood albumin characteristics and lymphocyte populations to tumor stage in gastrointestinal cancer patients,” Cancer Biomarkers 7, 91–99 (2010).
[Crossref]

Klimkane, L.

I. Kalnina, N. Kurjane, E. Kirilova, L. Klimkane, G. Kirilov, and T. Zvagule, “Correlation of altered blood albumin characteristics and lymphocyte populations to tumor stage in gastrointestinal cancer patients,” Cancer Biomarkers 7, 91–99 (2010).
[Crossref]

Koide, R.

T. Okuno, T. Nakanishi-Ueda, T. Ueda, H. Yasuhar, and R. Koide, “Ultraviolet action spectrum for cell killing of primary porcine lens epithelial cells,” J. Occup. Health 54, 181–186 (2012).
[Crossref]

Kuffuor, G. A.

S. Kyei, G. A. Kuffuor, P. Ramkissoon, L. Afari, and E. A. Asiamah, “The claim of anti-cataract potential of heliotropium indicum: a myth or reality?” Ophthalmol. Ther. 4, 115–128 (2015).
[Crossref]

Kurjane, N.

I. Kalnina, N. Kurjane, E. Kirilova, L. Klimkane, G. Kirilov, and T. Zvagule, “Correlation of altered blood albumin characteristics and lymphocyte populations to tumor stage in gastrointestinal cancer patients,” Cancer Biomarkers 7, 91–99 (2010).
[Crossref]

Kyei, S.

P. Osei-Wusu Adueming, J. M. Eghan, B. Anderson, S. Kyei, J. Opoku-Ansah, C. L. Y. Amuah, S. S. Sackey, and P. K. Buah-Bassuah, “Multispectral imaging in combination with multivariate analysis discriminates selenite induced cataractous lenses from healthy lenses of Sprague–Dawley Rats,” Open J. Biophys. 7, 145–156 (2017).
[Crossref]

S. Kyei, G. A. Kuffuor, P. Ramkissoon, L. Afari, and E. A. Asiamah, “The claim of anti-cataract potential of heliotropium indicum: a myth or reality?” Ophthalmol. Ther. 4, 115–128 (2015).
[Crossref]

Larionov, P. M.

N. A. Maslov, P. M. Larionov, I. A. Rozhin, I. B. Druzhinin, and C. V. Vhernykh, “Laser induced fluorescence spectroscopy of the secondary cataract,” Opt. Spectrosc. 120, 983–987 (2016).
[Crossref]

Lenka, V.

C. Ondrej, B. Zdenek, L. Adam, R. Antonin, M. Bretislav, L. Josef, and V. Lenka, “Laser- induced fluorescence spectroscopy in tissue local necrosis detection,” Proc. SPIE 8941, 89411D (2014).
[Crossref]

Lin, S.

Y. Xu, X. Gao, S. Lin, D. W. K. Wong, J. Liu, D. Xu, C. Cheng, C. Y. Cheung, and T. Y. Wong, “Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2013), Vol. 16, pp. 468–475.

Liu, J.

C. Peng and J. Liu, “Studies on red-shift rules in fluorescence spectra of human blood induced by LED,” Appl. Phys. Res. 5, 1–6 (2013).
[Crossref]

Y. Xu, X. Gao, S. Lin, D. W. K. Wong, J. Liu, D. Xu, C. Cheng, C. Y. Cheung, and T. Y. Wong, “Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2013), Vol. 16, pp. 468–475.

Majumder, S. K.

P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence,” Lasers Surg. Med. 21,417–422 (1997).
[Crossref]

Mansour, H. N.

R. S. Chuck, R. E. N. Shehada, M. Taban, T. Tungsiripat, P. M. Sweet, H. N. Mansour, and P. J. McDonnell, “193-nm excimer laser-induced fluorescence detection of fluoroquinolonesin rabbit corneas,” Arch. Ophthalmol. 122, 1693–1699 (2004).
[Crossref]

Maryam, L.

G. Fatemeh, P. Parviz, and L. Maryam, “Laser-induced fluorescence spectroscopy for diagnosis of cancerous tissues based on fluorescence properties of formaldehyde,” Laser Phys. Lett. 16, 035601 (2019).
[Crossref]

Masilamani, V.

M. Al-Salhi, V. Masilamani, T. Vijmasi, H. Al-Nachawati, and A. P. Vijaya Raghavan, “Lung cancer detection by native fluorescence spectra of body fluids—a preliminary study,” J. Fluoresc. 21, 637–645 (2011).
[Crossref]

V. Masilamani, V. Trinka, M. Al Salhi, M. Elangovan, V. Raghavan, A. R. Al Diab, and A.-H. A. Nachawati, “New lung cancer biomarker—a preliminary report,” Photomed. Laser Surg. 29, 161–170 (2011).
[Crossref]

Maslov, N. A.

N. A. Maslov, P. M. Larionov, I. A. Rozhin, I. B. Druzhinin, and C. V. Vhernykh, “Laser induced fluorescence spectroscopy of the secondary cataract,” Opt. Spectrosc. 120, 983–987 (2016).
[Crossref]

McCarty, C. A.

C. A. McCarty and H. R. Taylor, “A review of the epidemiologic evidence linking ultraviolet radiation and cataracts,” Dev. Ophthalmol. 35, 21–31 (2002).
[Crossref]

McDonnell, P. J.

R. S. Chuck, R. E. N. Shehada, M. Taban, T. Tungsiripat, P. M. Sweet, H. N. Mansour, and P. J. McDonnell, “193-nm excimer laser-induced fluorescence detection of fluoroquinolonesin rabbit corneas,” Arch. Ophthalmol. 122, 1693–1699 (2004).
[Crossref]

A. F. Phillips and P. J. McDonnell, “Laser-induced fluorescence during photorefractive keratectomy: a method for controlling epithelial removal,” Am. J. Ophthalmol. 123, 42–47 (1997).
[Crossref]

McRobbie, M.

D. Karadaglic, A. D. Wood, M. McRobbie, R. Stojanovic, and C. S. Herrington, “Fluorescence spectroscopy of an in vitro model of human cervical neoplasia identifies graded spectral shape changes with neoplastic phenotype and a differential effect of acetic acid,”Int. J. Cancer Epidemiol., Det. Prev. 33, 463–468 (2009).
[Crossref]

Nachawati, A.-H. A.

V. Masilamani, V. Trinka, M. Al Salhi, M. Elangovan, V. Raghavan, A. R. Al Diab, and A.-H. A. Nachawati, “New lung cancer biomarker—a preliminary report,” Photomed. Laser Surg. 29, 161–170 (2011).
[Crossref]

Nakanishi-Ueda, T.

T. Okuno, T. Nakanishi-Ueda, T. Ueda, H. Yasuhar, and R. Koide, “Ultraviolet action spectrum for cell killing of primary porcine lens epithelial cells,” J. Occup. Health 54, 181–186 (2012).
[Crossref]

Novar, J.

F. H. Zuclich, B. Previc, J. Novar, and P. Edsall, “Near- UV/blue light-induced fluorescence in the human lens: potential interference with visual function,” J. Biomed. Opt. 10, 44021 (2005).
[Crossref]

Nyarko Boampong, J.

J. Opoku-Ansah, M. J. Eghan, B. Anderson, J. Nyarko Boampong, and P. K. Buah-Bassuah, “Laser- induced autofluorescence technique for plasmodium falciparum parasite density estimation,”Appl. Phys. Res. 8, 43–51 (2016).
[Crossref]

Okano, T.

T. Okano, S. Uga, S. Ishikawa, and S. Shumiya, “Histopathological study of hereditary cataractous lenses in the SCR strain rat,”Exp. Eye Res. 57, 567–576 (1993).
[Crossref]

Okuno, T.

T. Okuno, T. Nakanishi-Ueda, T. Ueda, H. Yasuhar, and R. Koide, “Ultraviolet action spectrum for cell killing of primary porcine lens epithelial cells,” J. Occup. Health 54, 181–186 (2012).
[Crossref]

Ondrej, C.

C. Ondrej, B. Zdenek, L. Adam, R. Antonin, M. Bretislav, L. Josef, and V. Lenka, “Laser- induced fluorescence spectroscopy in tissue local necrosis detection,” Proc. SPIE 8941, 89411D (2014).
[Crossref]

Opoku-Ansah, J.

P. Osei-Wusu Adueming, J. M. Eghan, B. Anderson, S. Kyei, J. Opoku-Ansah, C. L. Y. Amuah, S. S. Sackey, and P. K. Buah-Bassuah, “Multispectral imaging in combination with multivariate analysis discriminates selenite induced cataractous lenses from healthy lenses of Sprague–Dawley Rats,” Open J. Biophys. 7, 145–156 (2017).
[Crossref]

J. Opoku-Ansah, M. J. Eghan, B. Anderson, J. Nyarko Boampong, and P. K. Buah-Bassuah, “Laser- induced autofluorescence technique for plasmodium falciparum parasite density estimation,”Appl. Phys. Res. 8, 43–51 (2016).
[Crossref]

C. L. Y. Amuah, M. J. Eghan, B. Anderson, P. Osei Wusu Adueming, and J. Opoku-Ansah, “Laser induced fluorescence in combination with multivariate analysis classifies anti-malarial herbal plants,” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu2A.71.

Osei Wusu Adueming, P.

C. L. Y. Amuah, M. J. Eghan, B. Anderson, P. Osei Wusu Adueming, and J. Opoku-Ansah, “Laser induced fluorescence in combination with multivariate analysis classifies anti-malarial herbal plants,” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu2A.71.

Osei-Wusu Adueming, P.

P. Osei-Wusu Adueming, J. M. Eghan, B. Anderson, S. Kyei, J. Opoku-Ansah, C. L. Y. Amuah, S. S. Sackey, and P. K. Buah-Bassuah, “Multispectral imaging in combination with multivariate analysis discriminates selenite induced cataractous lenses from healthy lenses of Sprague–Dawley Rats,” Open J. Biophys. 7, 145–156 (2017).
[Crossref]

Palmer, G. M.

G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78, 462–469 (2003).
[Crossref]

Parviz, P.

G. Fatemeh, P. Parviz, and L. Maryam, “Laser-induced fluorescence spectroscopy for diagnosis of cancerous tissues based on fluorescence properties of formaldehyde,” Laser Phys. Lett. 16, 035601 (2019).
[Crossref]

Peng, C.

C. Peng and J. Liu, “Studies on red-shift rules in fluorescence spectra of human blood induced by LED,” Appl. Phys. Res. 5, 1–6 (2013).
[Crossref]

Philipson, B.

B. Philipson, “Changes in the lens related to the reduction of transparency,” Exp. Eye Res. 16, 29–39 (1973).
[Crossref]

Phillips, A. F.

A. F. Phillips and P. J. McDonnell, “Laser-induced fluorescence during photorefractive keratectomy: a method for controlling epithelial removal,” Am. J. Ophthalmol. 123, 42–47 (1997).
[Crossref]

Popescua, G.

Z. Wang, K. Tangella, A. Balla, and G. Popescua, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16, 116017 (2011).
[Crossref]

Previc, B.

F. H. Zuclich, B. Previc, J. Novar, and P. Edsall, “Near- UV/blue light-induced fluorescence in the human lens: potential interference with visual function,” J. Biomed. Opt. 10, 44021 (2005).
[Crossref]

Raghavan, V.

V. Masilamani, V. Trinka, M. Al Salhi, M. Elangovan, V. Raghavan, A. R. Al Diab, and A.-H. A. Nachawati, “New lung cancer biomarker—a preliminary report,” Photomed. Laser Surg. 29, 161–170 (2011).
[Crossref]

Ramanujam, N.

G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78, 462–469 (2003).
[Crossref]

Ramkissoon, P.

S. Kyei, G. A. Kuffuor, P. Ramkissoon, L. Afari, and E. A. Asiamah, “The claim of anti-cataract potential of heliotropium indicum: a myth or reality?” Ophthalmol. Ther. 4, 115–128 (2015).
[Crossref]

Rozhin, I. A.

N. A. Maslov, P. M. Larionov, I. A. Rozhin, I. B. Druzhinin, and C. V. Vhernykh, “Laser induced fluorescence spectroscopy of the secondary cataract,” Opt. Spectrosc. 120, 983–987 (2016).
[Crossref]

Sackey, S. S.

P. Osei-Wusu Adueming, J. M. Eghan, B. Anderson, S. Kyei, J. Opoku-Ansah, C. L. Y. Amuah, S. S. Sackey, and P. K. Buah-Bassuah, “Multispectral imaging in combination with multivariate analysis discriminates selenite induced cataractous lenses from healthy lenses of Sprague–Dawley Rats,” Open J. Biophys. 7, 145–156 (2017).
[Crossref]

Sara, E.

E. Sara, B. Anderson, and S. Svanberg, “Compact fibre-optic fluorosensor employing light- emitting diodes as excitation sources,” Spectrochim. Acta Part B 63, 349–353 (2008).
[Crossref]

Schor, N.

F. G. De Goes Rocha, C. K. C. Barbosa, C. Z. Gomes, C. B. Campanharo, L. C. Courro, N. Schor, and M. H. Bellini, “Erythrocyte protoporphyrin fluorescence as a biomarker for monitoring antiangiogenic cancer therapy,” J. Fluoresc. 20, 1225–1231 (2010).
[Crossref]

F. R. De Oliveira Silva, M. H. Bellini, V. R. Tristao, N. Schor, D. Vieira, and L. C. Courrol, “Intrinsic fluorescence of protoporphyrin IX from blood samples can yield information on the growth of prostate tumours,” J. Fluoresc. 20, 1159–1165 (2010).
[Crossref]

Shearer, T. R.

L. L. David, B. M. Dickey, and T. R. Shearer, “Origin of urea-soluble protein in the selenite cataract, the role of β-cristalline proteolysis and Calpain II. Investigative,” Ophthalmol. Visual Sci. 28, 1148–1156 (1987).

Shehada, R. E. N.

R. S. Chuck, R. E. N. Shehada, M. Taban, T. Tungsiripat, P. M. Sweet, H. N. Mansour, and P. J. McDonnell, “193-nm excimer laser-induced fluorescence detection of fluoroquinolonesin rabbit corneas,” Arch. Ophthalmol. 122, 1693–1699 (2004).
[Crossref]

Shumiya, S.

T. Okano, S. Uga, S. Ishikawa, and S. Shumiya, “Histopathological study of hereditary cataractous lenses in the SCR strain rat,”Exp. Eye Res. 57, 567–576 (1993).
[Crossref]

Stojanovic, R.

D. Karadaglic, A. D. Wood, M. McRobbie, R. Stojanovic, and C. S. Herrington, “Fluorescence spectroscopy of an in vitro model of human cervical neoplasia identifies graded spectral shape changes with neoplastic phenotype and a differential effect of acetic acid,”Int. J. Cancer Epidemiol., Det. Prev. 33, 463–468 (2009).
[Crossref]

Stojcic, M.

L. Zoris and M. Stojcic, “The influence of ultraviolet radiation on eye,” Prim. Heal. Care 3, 1079–2167 (2013).
[Crossref]

Svanberg, S.

E. Sara, B. Anderson, and S. Svanberg, “Compact fibre-optic fluorosensor employing light- emitting diodes as excitation sources,” Spectrochim. Acta Part B 63, 349–353 (2008).
[Crossref]

Sweet, P. M.

R. S. Chuck, R. E. N. Shehada, M. Taban, T. Tungsiripat, P. M. Sweet, H. N. Mansour, and P. J. McDonnell, “193-nm excimer laser-induced fluorescence detection of fluoroquinolonesin rabbit corneas,” Arch. Ophthalmol. 122, 1693–1699 (2004).
[Crossref]

Taban, M.

R. S. Chuck, R. E. N. Shehada, M. Taban, T. Tungsiripat, P. M. Sweet, H. N. Mansour, and P. J. McDonnell, “193-nm excimer laser-induced fluorescence detection of fluoroquinolonesin rabbit corneas,” Arch. Ophthalmol. 122, 1693–1699 (2004).
[Crossref]

Tangella, K.

Z. Wang, K. Tangella, A. Balla, and G. Popescua, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16, 116017 (2011).
[Crossref]

Taylor, H. R.

C. A. McCarty and H. R. Taylor, “A review of the epidemiologic evidence linking ultraviolet radiation and cataracts,” Dev. Ophthalmol. 35, 21–31 (2002).
[Crossref]

Thylefors, B.

B. Thylefors, “Global data on blindness,” Bull. World Health Org. 73(1), 115–121 (1997).

Trinka, V.

V. Masilamani, V. Trinka, M. Al Salhi, M. Elangovan, V. Raghavan, A. R. Al Diab, and A.-H. A. Nachawati, “New lung cancer biomarker—a preliminary report,” Photomed. Laser Surg. 29, 161–170 (2011).
[Crossref]

Tristao, V. R.

F. R. De Oliveira Silva, M. H. Bellini, V. R. Tristao, N. Schor, D. Vieira, and L. C. Courrol, “Intrinsic fluorescence of protoporphyrin IX from blood samples can yield information on the growth of prostate tumours,” J. Fluoresc. 20, 1159–1165 (2010).
[Crossref]

Tuft, S.

S. Tuft, R. Al-Dhahir, P. Dyer, and Z. Zehao, “Characterization of the fluorescence spectra produced by excimer laser irradiation of the cornea,” Invest. Ophthalmol. Visual Sci. 31, 1512–1518 (1990).

Tungsiripat, T.

R. S. Chuck, R. E. N. Shehada, M. Taban, T. Tungsiripat, P. M. Sweet, H. N. Mansour, and P. J. McDonnell, “193-nm excimer laser-induced fluorescence detection of fluoroquinolonesin rabbit corneas,” Arch. Ophthalmol. 122, 1693–1699 (2004).
[Crossref]

Ueda, T.

T. Okuno, T. Nakanishi-Ueda, T. Ueda, H. Yasuhar, and R. Koide, “Ultraviolet action spectrum for cell killing of primary porcine lens epithelial cells,” J. Occup. Health 54, 181–186 (2012).
[Crossref]

Uga, S.

T. Okano, S. Uga, S. Ishikawa, and S. Shumiya, “Histopathological study of hereditary cataractous lenses in the SCR strain rat,”Exp. Eye Res. 57, 567–576 (1993).
[Crossref]

Uppal, A.

P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence,” Lasers Surg. Med. 21,417–422 (1997).
[Crossref]

Vhernykh, C. V.

N. A. Maslov, P. M. Larionov, I. A. Rozhin, I. B. Druzhinin, and C. V. Vhernykh, “Laser induced fluorescence spectroscopy of the secondary cataract,” Opt. Spectrosc. 120, 983–987 (2016).
[Crossref]

Vieira, D.

F. R. De Oliveira Silva, M. H. Bellini, V. R. Tristao, N. Schor, D. Vieira, and L. C. Courrol, “Intrinsic fluorescence of protoporphyrin IX from blood samples can yield information on the growth of prostate tumours,” J. Fluoresc. 20, 1159–1165 (2010).
[Crossref]

Vijaya Raghavan, A. P.

M. Al-Salhi, V. Masilamani, T. Vijmasi, H. Al-Nachawati, and A. P. Vijaya Raghavan, “Lung cancer detection by native fluorescence spectra of body fluids—a preliminary study,” J. Fluoresc. 21, 637–645 (2011).
[Crossref]

Vijmasi, T.

M. Al-Salhi, V. Masilamani, T. Vijmasi, H. Al-Nachawati, and A. P. Vijaya Raghavan, “Lung cancer detection by native fluorescence spectra of body fluids—a preliminary study,” J. Fluoresc. 21, 637–645 (2011).
[Crossref]

Wang, Z.

Z. Wang, K. Tangella, A. Balla, and G. Popescua, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16, 116017 (2011).
[Crossref]

Wong, D. W. K.

Y. Xu, X. Gao, S. Lin, D. W. K. Wong, J. Liu, D. Xu, C. Cheng, C. Y. Cheung, and T. Y. Wong, “Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2013), Vol. 16, pp. 468–475.

Wong, T. Y.

Y. Xu, X. Gao, S. Lin, D. W. K. Wong, J. Liu, D. Xu, C. Cheng, C. Y. Cheung, and T. Y. Wong, “Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2013), Vol. 16, pp. 468–475.

Wood, A. D.

D. Karadaglic, A. D. Wood, M. McRobbie, R. Stojanovic, and C. S. Herrington, “Fluorescence spectroscopy of an in vitro model of human cervical neoplasia identifies graded spectral shape changes with neoplastic phenotype and a differential effect of acetic acid,”Int. J. Cancer Epidemiol., Det. Prev. 33, 463–468 (2009).
[Crossref]

Wormstone, I. M.

G. Duncan, I. M. Wormstone, and P. D. Davies, “The aging human lens: structure, growth and physiological behavior,” Br. J. Ophthalmol. 81, 818–823 (1997).
[Crossref]

Xu, D.

Y. Xu, X. Gao, S. Lin, D. W. K. Wong, J. Liu, D. Xu, C. Cheng, C. Y. Cheung, and T. Y. Wong, “Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2013), Vol. 16, pp. 468–475.

Xu, Y.

Y. Xu, X. Gao, S. Lin, D. W. K. Wong, J. Liu, D. Xu, C. Cheng, C. Y. Cheung, and T. Y. Wong, “Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2013), Vol. 16, pp. 468–475.

Yasuhar, H.

T. Okuno, T. Nakanishi-Ueda, T. Ueda, H. Yasuhar, and R. Koide, “Ultraviolet action spectrum for cell killing of primary porcine lens epithelial cells,” J. Occup. Health 54, 181–186 (2012).
[Crossref]

Zdenek, B.

C. Ondrej, B. Zdenek, L. Adam, R. Antonin, M. Bretislav, L. Josef, and V. Lenka, “Laser- induced fluorescence spectroscopy in tissue local necrosis detection,” Proc. SPIE 8941, 89411D (2014).
[Crossref]

Zehao, Z.

S. Tuft, R. Al-Dhahir, P. Dyer, and Z. Zehao, “Characterization of the fluorescence spectra produced by excimer laser irradiation of the cornea,” Invest. Ophthalmol. Visual Sci. 31, 1512–1518 (1990).

Zoris, L.

L. Zoris and M. Stojcic, “The influence of ultraviolet radiation on eye,” Prim. Heal. Care 3, 1079–2167 (2013).
[Crossref]

Zuclich, F. H.

F. H. Zuclich, B. Previc, J. Novar, and P. Edsall, “Near- UV/blue light-induced fluorescence in the human lens: potential interference with visual function,” J. Biomed. Opt. 10, 44021 (2005).
[Crossref]

Zvagule, T.

I. Kalnina, N. Kurjane, E. Kirilova, L. Klimkane, G. Kirilov, and T. Zvagule, “Correlation of altered blood albumin characteristics and lymphocyte populations to tumor stage in gastrointestinal cancer patients,” Cancer Biomarkers 7, 91–99 (2010).
[Crossref]

Am. J. Ophthalmol. (1)

A. F. Phillips and P. J. McDonnell, “Laser-induced fluorescence during photorefractive keratectomy: a method for controlling epithelial removal,” Am. J. Ophthalmol. 123, 42–47 (1997).
[Crossref]

Appl. Phys. Res. (2)

C. Peng and J. Liu, “Studies on red-shift rules in fluorescence spectra of human blood induced by LED,” Appl. Phys. Res. 5, 1–6 (2013).
[Crossref]

J. Opoku-Ansah, M. J. Eghan, B. Anderson, J. Nyarko Boampong, and P. K. Buah-Bassuah, “Laser- induced autofluorescence technique for plasmodium falciparum parasite density estimation,”Appl. Phys. Res. 8, 43–51 (2016).
[Crossref]

Arch. Ophthalmol. (1)

R. S. Chuck, R. E. N. Shehada, M. Taban, T. Tungsiripat, P. M. Sweet, H. N. Mansour, and P. J. McDonnell, “193-nm excimer laser-induced fluorescence detection of fluoroquinolonesin rabbit corneas,” Arch. Ophthalmol. 122, 1693–1699 (2004).
[Crossref]

Br. J. Ophthalmol. (1)

G. Duncan, I. M. Wormstone, and P. D. Davies, “The aging human lens: structure, growth and physiological behavior,” Br. J. Ophthalmol. 81, 818–823 (1997).
[Crossref]

Bull. World Health Org. (1)

B. Thylefors, “Global data on blindness,” Bull. World Health Org. 73(1), 115–121 (1997).

Cancer Biomarkers (1)

I. Kalnina, N. Kurjane, E. Kirilova, L. Klimkane, G. Kirilov, and T. Zvagule, “Correlation of altered blood albumin characteristics and lymphocyte populations to tumor stage in gastrointestinal cancer patients,” Cancer Biomarkers 7, 91–99 (2010).
[Crossref]

Curr. Eye Res. (1)

R. J. Cenedella and C. R. Fleshner, “Selective association of crystallins with lens “native” membrane during dynamic cataractogenesis,” Curr. Eye Res. 11, 801–815 (1992).
[Crossref]

Dev. Ophthalmol. (1)

C. A. McCarty and H. R. Taylor, “A review of the epidemiologic evidence linking ultraviolet radiation and cataracts,” Dev. Ophthalmol. 35, 21–31 (2002).
[Crossref]

Exp. Eye Res. (2)

B. Philipson, “Changes in the lens related to the reduction of transparency,” Exp. Eye Res. 16, 29–39 (1973).
[Crossref]

T. Okano, S. Uga, S. Ishikawa, and S. Shumiya, “Histopathological study of hereditary cataractous lenses in the SCR strain rat,”Exp. Eye Res. 57, 567–576 (1993).
[Crossref]

Int. J. Cancer Epidemiol., Det. Prev. (1)

D. Karadaglic, A. D. Wood, M. McRobbie, R. Stojanovic, and C. S. Herrington, “Fluorescence spectroscopy of an in vitro model of human cervical neoplasia identifies graded spectral shape changes with neoplastic phenotype and a differential effect of acetic acid,”Int. J. Cancer Epidemiol., Det. Prev. 33, 463–468 (2009).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

S. Tuft, R. Al-Dhahir, P. Dyer, and Z. Zehao, “Characterization of the fluorescence spectra produced by excimer laser irradiation of the cornea,” Invest. Ophthalmol. Visual Sci. 31, 1512–1518 (1990).

J. Biomed. Opt. (2)

F. H. Zuclich, B. Previc, J. Novar, and P. Edsall, “Near- UV/blue light-induced fluorescence in the human lens: potential interference with visual function,” J. Biomed. Opt. 10, 44021 (2005).
[Crossref]

Z. Wang, K. Tangella, A. Balla, and G. Popescua, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16, 116017 (2011).
[Crossref]

J. Fluoresc. (3)

M. Al-Salhi, V. Masilamani, T. Vijmasi, H. Al-Nachawati, and A. P. Vijaya Raghavan, “Lung cancer detection by native fluorescence spectra of body fluids—a preliminary study,” J. Fluoresc. 21, 637–645 (2011).
[Crossref]

F. G. De Goes Rocha, C. K. C. Barbosa, C. Z. Gomes, C. B. Campanharo, L. C. Courro, N. Schor, and M. H. Bellini, “Erythrocyte protoporphyrin fluorescence as a biomarker for monitoring antiangiogenic cancer therapy,” J. Fluoresc. 20, 1225–1231 (2010).
[Crossref]

F. R. De Oliveira Silva, M. H. Bellini, V. R. Tristao, N. Schor, D. Vieira, and L. C. Courrol, “Intrinsic fluorescence of protoporphyrin IX from blood samples can yield information on the growth of prostate tumours,” J. Fluoresc. 20, 1159–1165 (2010).
[Crossref]

J. Occup. Health (1)

T. Okuno, T. Nakanishi-Ueda, T. Ueda, H. Yasuhar, and R. Koide, “Ultraviolet action spectrum for cell killing of primary porcine lens epithelial cells,” J. Occup. Health 54, 181–186 (2012).
[Crossref]

Laser Phys. Lett. (1)

G. Fatemeh, P. Parviz, and L. Maryam, “Laser-induced fluorescence spectroscopy for diagnosis of cancerous tissues based on fluorescence properties of formaldehyde,” Laser Phys. Lett. 16, 035601 (2019).
[Crossref]

Lasers Surg. Med. (1)

P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence,” Lasers Surg. Med. 21,417–422 (1997).
[Crossref]

Open J. Biophys. (1)

P. Osei-Wusu Adueming, J. M. Eghan, B. Anderson, S. Kyei, J. Opoku-Ansah, C. L. Y. Amuah, S. S. Sackey, and P. K. Buah-Bassuah, “Multispectral imaging in combination with multivariate analysis discriminates selenite induced cataractous lenses from healthy lenses of Sprague–Dawley Rats,” Open J. Biophys. 7, 145–156 (2017).
[Crossref]

Ophthalmol. Ther. (1)

S. Kyei, G. A. Kuffuor, P. Ramkissoon, L. Afari, and E. A. Asiamah, “The claim of anti-cataract potential of heliotropium indicum: a myth or reality?” Ophthalmol. Ther. 4, 115–128 (2015).
[Crossref]

Ophthalmol. Visual Sci. (1)

L. L. David, B. M. Dickey, and T. R. Shearer, “Origin of urea-soluble protein in the selenite cataract, the role of β-cristalline proteolysis and Calpain II. Investigative,” Ophthalmol. Visual Sci. 28, 1148–1156 (1987).

Opt. Spectrosc. (1)

N. A. Maslov, P. M. Larionov, I. A. Rozhin, I. B. Druzhinin, and C. V. Vhernykh, “Laser induced fluorescence spectroscopy of the secondary cataract,” Opt. Spectrosc. 120, 983–987 (2016).
[Crossref]

Photochem. Photobiol. (1)

G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78, 462–469 (2003).
[Crossref]

Photomed. Laser Surg. (1)

V. Masilamani, V. Trinka, M. Al Salhi, M. Elangovan, V. Raghavan, A. R. Al Diab, and A.-H. A. Nachawati, “New lung cancer biomarker—a preliminary report,” Photomed. Laser Surg. 29, 161–170 (2011).
[Crossref]

Prim. Heal. Care (1)

L. Zoris and M. Stojcic, “The influence of ultraviolet radiation on eye,” Prim. Heal. Care 3, 1079–2167 (2013).
[Crossref]

Proc. SPIE (1)

C. Ondrej, B. Zdenek, L. Adam, R. Antonin, M. Bretislav, L. Josef, and V. Lenka, “Laser- induced fluorescence spectroscopy in tissue local necrosis detection,” Proc. SPIE 8941, 89411D (2014).
[Crossref]

Spectrochim. Acta Part B (1)

E. Sara, B. Anderson, and S. Svanberg, “Compact fibre-optic fluorosensor employing light- emitting diodes as excitation sources,” Spectrochim. Acta Part B 63, 349–353 (2008).
[Crossref]

Other (3)

C. L. Y. Amuah, M. J. Eghan, B. Anderson, P. Osei Wusu Adueming, and J. Opoku-Ansah, “Laser induced fluorescence in combination with multivariate analysis classifies anti-malarial herbal plants,” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu2A.71.

Y. Xu, X. Gao, S. Lin, D. W. K. Wong, J. Liu, D. Xu, C. Cheng, C. Y. Cheung, and T. Y. Wong, “Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2013), Vol. 16, pp. 468–475.

International Agency for the Prevention of Blindness, “IAPB Report-State of the World Sight 2010,” report (2010) https://www.iapb.org/resources/iapb-report-state-of-the-world-sight-2010/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of LIAF setup used for acquiring LIAF data from Sprague–Dawley rats lens tissues.
Fig. 2.
Fig. 2. Structure chat for processing LIAFS data of cataractous and healthy lens tissues as well as performing multivariate analysis.
Fig. 3.
Fig. 3. Normalized mean AFS from Groups A and B lens tissues at 405 nm and 445 nm laser-induced excitations.
Fig. 4.
Fig. 4. Gaussian function peak-fitted AFS ctra from Groups A and B lens tissues of Sprague–Dawley rats from 405 nm excitation.
Fig. 5.
Fig. 5. Gaussian function peak-fitted AFS from Groups A and B lens tissues of Sprague–Dawley rats from 445 nm laser-induced excitation.
Fig. 6.
Fig. 6. Scatter plots of the first three PCs of Groups A and B lens tissues of AFS obtained at (a) 405 nm and (b) 445 nm excitation light sources.
Fig. 7.
Fig. 7. Groups A and B lens data plotted in the coordinates of the first two Fisher’s linear discriminants AFS obtained with (a) 405 nm and (b) 445 nm excitation sources. The circles represent the classification midpoint.

Tables (2)

Tables Icon

Table 1. Peak Wavelengths, p -Values between Group A and Group B Obtained at 405 nm Excitation Wavelength

Tables Icon

Table 2. Peak Wavelengths, p -Values between Group A and Group B Obtained at 445 nm Excitation Wavelength

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P = ( P C ¯ G r o u p A P C ¯ G r o u p B ) / S c / P C xo ,
P 0 = ( P C ¯ G r o u p A P C ¯ G r o u p B ) / S c / P C Xo m ,
m = 1 2 ( P C ¯ G r o u p A P C ¯ G r o u p B ) / S c / ( P C ¯ G r o u p A + P C ¯ G r o u p B ) ,
P 0 < m .
P o = M 1 r 1 + M 2 r 2 + M 3 r 3 ,
P o = N 1 r 1 + N 2 r 2 + N 3 r 3 .

Metrics