Abstract

A laboratory-prepared wedge-shaped fiber probe using step-index multimode plastic optical fiber was described and tested in a lab-scale gas–liquid flow generator. A three-dimensional model was established in order to fully simulate the process of bubble piercing by the optical fiber probe. A theoretical analysis of the luminous intensity distribution of the light transmission in the process of bubble piercing was undertaken under conditions of different relative positions between the fiber probe and the bubble axis. Using this analytical method, it was possible to accurately define the range of the central region of the bubble where the presignal appeared.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photothermally generated bubble on fiber (BoF) for precise sensing and control of liquid flow along a microfluidic channel

Jun Ma, Guanyu Wang, Long Jin, Kyunghwan Oh, and Bai-Ou Guan
Opt. Express 27(14) 19768-19777 (2019)

Fringe probing of gas–liquid interfacial film in a microcapillary tube

Xishi Wang and Huihe Qiu
Appl. Opt. 44(22) 4648-4653 (2005)

Microbubble generation using fiber optic tips coated with nanoparticles

Reinher Pimentel-Domínguez, Juan Hernández-Cordero, and Roberto Zenit
Opt. Express 20(8) 8732-8740 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Samaras, M. Kostoglou, T. D. Karapantsios, and P. Mavros, “Effect of adding glycerol and Tween 80 on gas holdup and bubble size distribution in an aerated stirred tank,” Colloids Surf. A 441, 815–824 (2014).
    [Crossref]
  2. R. Thorn, G. A. Johansen, and B. T. Hjertaker, “Three-phase flow measurement in the petroleum industry,” Meas. Sci. Technol. 24, 012003 (2013).
    [Crossref]
  3. A. F. Skea and A. R. W. Hall, “Effects of gas leaks in oil flow on single-phase flowmeters,” Flow Meas. Instrum. 10, 145–150 (1999).
    [Crossref]
  4. Z. Q. Sun, Y. P. Chen, and H. Gong, “Classification of gas-liquid flow patterns by the norm entropy of wavelet decomposed pressure fluctuations across a bluff body,” Meas. Sci. Technol. 23, 125301 (2012).
    [Crossref]
  5. C. Corazza, K. Rosseel, W. Leysen, K. Gladinez, A. Marino, J. Lim, and A. Aerts, “Optical fibre void fraction detection for liquid metal fast neutron reactors,” Exp. Therm. Fluid Sci. 113, 109865 (2020).
    [Crossref]
  6. R. Q. Lv, H. K. Zheng, Y. Zhao, and Y. F. Gu, “An optical fiber sensor for simultaneous measurement of flow rate and temperature in the pipeline,” Opt. Fiber Technol. 45, 313–318 (2018).
    [Crossref]
  7. A. A. Kulkarni and J. B. Joshi, “Bubble formation and bubble rise velocity in gas-liquid systems: a review,” Ind. Eng. Chem. Res. 44, 5873–5931 (2005).
    [Crossref]
  8. N. Miller and R. E. Mitchie, “Measurement of local voidage in liquid/gas two-phase flow systems,” J. Brit. Nucl. Energy Soc. 9, 94–100 (1970).
  9. F. Danel and J. M. Delhaye, “Sonde optique pour la mesure du taux de présence local en écoulement diphasique,” Mes. Regul. Autom. 36, 99–101 (1971).
  10. N. Abuaf, O. C. Jones, and G. A. Zimmer, “Optical probe for local void fraction and interface velocity measurements,” Rev. Sci. Instrum. 49, 1090–1094 (1978).
    [Crossref]
  11. E. J. Fordham, S. Simonian, R. T. Ramos, A. Holmes, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre optical probes. II. Gas/liquid flows,” Meas. Sci. Technol. 10, 1338–1346 (1999).
    [Crossref]
  12. A. Cartellier, “Simultaneous void fraction measurement, bubble velocity, and size estimate using a single optical probe in gas–liquid two-phase flows,” Rev. Sci. Instrum. 63, 5442–5453 (1992).
    [Crossref]
  13. J. Zhang, H. Xiao, and J. H. Dong, “Zeolite-coated optical fiber sensors for in situ detection of organics in gas and liquid phases,” Proc. SPIE 5993, 59930N (2005).
    [Crossref]
  14. F. Murzyn, D. Mouaze, and J. R. Chaplin, “Optical fibre probe measurements of bubbly flow in hydraulic jumps,” Int. J. Multiph. Flow 31, 141–154 (2005).
    [Crossref]
  15. S. L. Kiambi, A. M. Duquenne, A. Bascoul, and H. Delmas, “Measurements of local interfacial area: application of bi-optical fibre technique,” Chem. Eng. Sci. 56, 6447–6453 (2001).
    [Crossref]
  16. A. Sakamoto and T. Saito, “Robust algorithms for quantifying noisy signals of optical fiber probes employed in industrial-scale practical bubbly flows,” Int. J. Multiph. Flow. 41, 77–90 (2012).
    [Crossref]
  17. T. Saito, K. Sato, A. Nihei, and H. Muramatsu, “Improvement of optical fiber probing in multiphase systems, and the possibility of practical application in chemical engineering processes,” J. Chem. Eng. Jpn. 51, 331–341 (2018).
    [Crossref]
  18. Y. Mizushima and T. Saito, “Detection method of a position pierced by a single-tip optical fibre probe in bubble measurement,” Meas. Sci. Technol. 23, 85308 (2012).
    [Crossref]
  19. A. Sakamoto and T. Saito, “Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement,” Rev. Sci. Instrum. 83, 075107 (2012).
    [Crossref]
  20. Y. Ma, C. Muilwijk, Y. J. Yan, X. Zhang, H. P. Li, T. C. Xie, Z. Qin, W. M. Sun, and E. Lewis, “Measurement of bubble flow frequency in chemical processes using an optical fiber sensor,” in 17th IEEE Sensors Conference (2018), pp. 298–301.
  21. E. Mesquita, T. Paixão, P. Antunes, F. Coelho, P. Ferreira, P. André, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sens. Actuators A 240, 138–144 (2016).
    [Crossref]
  22. N. Zhong, Q. Lia, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
    [Crossref]
  23. N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
    [Crossref]
  24. J. J. Davenport, M. Hickey, J. P. Phillips, and P. A. Kyriacou, “Method for producing angled optical fiber tips in the laboratory,” Opt. Eng. 55, 026120 (2016).
    [Crossref]

2020 (1)

C. Corazza, K. Rosseel, W. Leysen, K. Gladinez, A. Marino, J. Lim, and A. Aerts, “Optical fibre void fraction detection for liquid metal fast neutron reactors,” Exp. Therm. Fluid Sci. 113, 109865 (2020).
[Crossref]

2018 (2)

R. Q. Lv, H. K. Zheng, Y. Zhao, and Y. F. Gu, “An optical fiber sensor for simultaneous measurement of flow rate and temperature in the pipeline,” Opt. Fiber Technol. 45, 313–318 (2018).
[Crossref]

T. Saito, K. Sato, A. Nihei, and H. Muramatsu, “Improvement of optical fiber probing in multiphase systems, and the possibility of practical application in chemical engineering processes,” J. Chem. Eng. Jpn. 51, 331–341 (2018).
[Crossref]

2016 (3)

E. Mesquita, T. Paixão, P. Antunes, F. Coelho, P. Ferreira, P. André, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sens. Actuators A 240, 138–144 (2016).
[Crossref]

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref]

J. J. Davenport, M. Hickey, J. P. Phillips, and P. A. Kyriacou, “Method for producing angled optical fiber tips in the laboratory,” Opt. Eng. 55, 026120 (2016).
[Crossref]

2015 (1)

N. Zhong, Q. Lia, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref]

2014 (1)

K. Samaras, M. Kostoglou, T. D. Karapantsios, and P. Mavros, “Effect of adding glycerol and Tween 80 on gas holdup and bubble size distribution in an aerated stirred tank,” Colloids Surf. A 441, 815–824 (2014).
[Crossref]

2013 (1)

R. Thorn, G. A. Johansen, and B. T. Hjertaker, “Three-phase flow measurement in the petroleum industry,” Meas. Sci. Technol. 24, 012003 (2013).
[Crossref]

2012 (4)

Z. Q. Sun, Y. P. Chen, and H. Gong, “Classification of gas-liquid flow patterns by the norm entropy of wavelet decomposed pressure fluctuations across a bluff body,” Meas. Sci. Technol. 23, 125301 (2012).
[Crossref]

Y. Mizushima and T. Saito, “Detection method of a position pierced by a single-tip optical fibre probe in bubble measurement,” Meas. Sci. Technol. 23, 85308 (2012).
[Crossref]

A. Sakamoto and T. Saito, “Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement,” Rev. Sci. Instrum. 83, 075107 (2012).
[Crossref]

A. Sakamoto and T. Saito, “Robust algorithms for quantifying noisy signals of optical fiber probes employed in industrial-scale practical bubbly flows,” Int. J. Multiph. Flow. 41, 77–90 (2012).
[Crossref]

2005 (3)

J. Zhang, H. Xiao, and J. H. Dong, “Zeolite-coated optical fiber sensors for in situ detection of organics in gas and liquid phases,” Proc. SPIE 5993, 59930N (2005).
[Crossref]

F. Murzyn, D. Mouaze, and J. R. Chaplin, “Optical fibre probe measurements of bubbly flow in hydraulic jumps,” Int. J. Multiph. Flow 31, 141–154 (2005).
[Crossref]

A. A. Kulkarni and J. B. Joshi, “Bubble formation and bubble rise velocity in gas-liquid systems: a review,” Ind. Eng. Chem. Res. 44, 5873–5931 (2005).
[Crossref]

2001 (1)

S. L. Kiambi, A. M. Duquenne, A. Bascoul, and H. Delmas, “Measurements of local interfacial area: application of bi-optical fibre technique,” Chem. Eng. Sci. 56, 6447–6453 (2001).
[Crossref]

1999 (2)

E. J. Fordham, S. Simonian, R. T. Ramos, A. Holmes, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre optical probes. II. Gas/liquid flows,” Meas. Sci. Technol. 10, 1338–1346 (1999).
[Crossref]

A. F. Skea and A. R. W. Hall, “Effects of gas leaks in oil flow on single-phase flowmeters,” Flow Meas. Instrum. 10, 145–150 (1999).
[Crossref]

1992 (1)

A. Cartellier, “Simultaneous void fraction measurement, bubble velocity, and size estimate using a single optical probe in gas–liquid two-phase flows,” Rev. Sci. Instrum. 63, 5442–5453 (1992).
[Crossref]

1978 (1)

N. Abuaf, O. C. Jones, and G. A. Zimmer, “Optical probe for local void fraction and interface velocity measurements,” Rev. Sci. Instrum. 49, 1090–1094 (1978).
[Crossref]

1971 (1)

F. Danel and J. M. Delhaye, “Sonde optique pour la mesure du taux de présence local en écoulement diphasique,” Mes. Regul. Autom. 36, 99–101 (1971).

1970 (1)

N. Miller and R. E. Mitchie, “Measurement of local voidage in liquid/gas two-phase flow systems,” J. Brit. Nucl. Energy Soc. 9, 94–100 (1970).

Abuaf, N.

N. Abuaf, O. C. Jones, and G. A. Zimmer, “Optical probe for local void fraction and interface velocity measurements,” Rev. Sci. Instrum. 49, 1090–1094 (1978).
[Crossref]

Aerts, A.

C. Corazza, K. Rosseel, W. Leysen, K. Gladinez, A. Marino, J. Lim, and A. Aerts, “Optical fibre void fraction detection for liquid metal fast neutron reactors,” Exp. Therm. Fluid Sci. 113, 109865 (2020).
[Crossref]

André, P.

E. Mesquita, T. Paixão, P. Antunes, F. Coelho, P. Ferreira, P. André, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sens. Actuators A 240, 138–144 (2016).
[Crossref]

Antunes, P.

E. Mesquita, T. Paixão, P. Antunes, F. Coelho, P. Ferreira, P. André, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sens. Actuators A 240, 138–144 (2016).
[Crossref]

Bascoul, A.

S. L. Kiambi, A. M. Duquenne, A. Bascoul, and H. Delmas, “Measurements of local interfacial area: application of bi-optical fibre technique,” Chem. Eng. Sci. 56, 6447–6453 (2001).
[Crossref]

Cartellier, A.

A. Cartellier, “Simultaneous void fraction measurement, bubble velocity, and size estimate using a single optical probe in gas–liquid two-phase flows,” Rev. Sci. Instrum. 63, 5442–5453 (1992).
[Crossref]

Chaplin, J. R.

F. Murzyn, D. Mouaze, and J. R. Chaplin, “Optical fibre probe measurements of bubbly flow in hydraulic jumps,” Int. J. Multiph. Flow 31, 141–154 (2005).
[Crossref]

Chen, R.

N. Zhong, Q. Lia, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref]

Chen, Y. P.

Z. Q. Sun, Y. P. Chen, and H. Gong, “Classification of gas-liquid flow patterns by the norm entropy of wavelet decomposed pressure fluctuations across a bluff body,” Meas. Sci. Technol. 23, 125301 (2012).
[Crossref]

Coelho, F.

E. Mesquita, T. Paixão, P. Antunes, F. Coelho, P. Ferreira, P. André, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sens. Actuators A 240, 138–144 (2016).
[Crossref]

Corazza, C.

C. Corazza, K. Rosseel, W. Leysen, K. Gladinez, A. Marino, J. Lim, and A. Aerts, “Optical fibre void fraction detection for liquid metal fast neutron reactors,” Exp. Therm. Fluid Sci. 113, 109865 (2020).
[Crossref]

Danel, F.

F. Danel and J. M. Delhaye, “Sonde optique pour la mesure du taux de présence local en écoulement diphasique,” Mes. Regul. Autom. 36, 99–101 (1971).

Davenport, J. J.

J. J. Davenport, M. Hickey, J. P. Phillips, and P. A. Kyriacou, “Method for producing angled optical fiber tips in the laboratory,” Opt. Eng. 55, 026120 (2016).
[Crossref]

Delhaye, J. M.

F. Danel and J. M. Delhaye, “Sonde optique pour la mesure du taux de présence local en écoulement diphasique,” Mes. Regul. Autom. 36, 99–101 (1971).

Delmas, H.

S. L. Kiambi, A. M. Duquenne, A. Bascoul, and H. Delmas, “Measurements of local interfacial area: application of bi-optical fibre technique,” Chem. Eng. Sci. 56, 6447–6453 (2001).
[Crossref]

Dong, J. H.

J. Zhang, H. Xiao, and J. H. Dong, “Zeolite-coated optical fiber sensors for in situ detection of organics in gas and liquid phases,” Proc. SPIE 5993, 59930N (2005).
[Crossref]

Duquenne, A. M.

S. L. Kiambi, A. M. Duquenne, A. Bascoul, and H. Delmas, “Measurements of local interfacial area: application of bi-optical fibre technique,” Chem. Eng. Sci. 56, 6447–6453 (2001).
[Crossref]

Ferreira, P.

E. Mesquita, T. Paixão, P. Antunes, F. Coelho, P. Ferreira, P. André, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sens. Actuators A 240, 138–144 (2016).
[Crossref]

Fordham, E. J.

E. J. Fordham, S. Simonian, R. T. Ramos, A. Holmes, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre optical probes. II. Gas/liquid flows,” Meas. Sci. Technol. 10, 1338–1346 (1999).
[Crossref]

Gladinez, K.

C. Corazza, K. Rosseel, W. Leysen, K. Gladinez, A. Marino, J. Lim, and A. Aerts, “Optical fibre void fraction detection for liquid metal fast neutron reactors,” Exp. Therm. Fluid Sci. 113, 109865 (2020).
[Crossref]

Gong, H.

Z. Q. Sun, Y. P. Chen, and H. Gong, “Classification of gas-liquid flow patterns by the norm entropy of wavelet decomposed pressure fluctuations across a bluff body,” Meas. Sci. Technol. 23, 125301 (2012).
[Crossref]

Gu, Y. F.

R. Q. Lv, H. K. Zheng, Y. Zhao, and Y. F. Gu, “An optical fiber sensor for simultaneous measurement of flow rate and temperature in the pipeline,” Opt. Fiber Technol. 45, 313–318 (2018).
[Crossref]

Hall, A. R. W.

A. F. Skea and A. R. W. Hall, “Effects of gas leaks in oil flow on single-phase flowmeters,” Flow Meas. Instrum. 10, 145–150 (1999).
[Crossref]

Hickey, M.

J. J. Davenport, M. Hickey, J. P. Phillips, and P. A. Kyriacou, “Method for producing angled optical fiber tips in the laboratory,” Opt. Eng. 55, 026120 (2016).
[Crossref]

Hjertaker, B. T.

R. Thorn, G. A. Johansen, and B. T. Hjertaker, “Three-phase flow measurement in the petroleum industry,” Meas. Sci. Technol. 24, 012003 (2013).
[Crossref]

Holmes, A.

E. J. Fordham, S. Simonian, R. T. Ramos, A. Holmes, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre optical probes. II. Gas/liquid flows,” Meas. Sci. Technol. 10, 1338–1346 (1999).
[Crossref]

Huang, S. M.

E. J. Fordham, S. Simonian, R. T. Ramos, A. Holmes, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre optical probes. II. Gas/liquid flows,” Meas. Sci. Technol. 10, 1338–1346 (1999).
[Crossref]

Huang, Y.

N. Zhong, Q. Lia, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref]

Johansen, G. A.

R. Thorn, G. A. Johansen, and B. T. Hjertaker, “Three-phase flow measurement in the petroleum industry,” Meas. Sci. Technol. 24, 012003 (2013).
[Crossref]

Jones, O. C.

N. Abuaf, O. C. Jones, and G. A. Zimmer, “Optical probe for local void fraction and interface velocity measurements,” Rev. Sci. Instrum. 49, 1090–1094 (1978).
[Crossref]

Joshi, J. B.

A. A. Kulkarni and J. B. Joshi, “Bubble formation and bubble rise velocity in gas-liquid systems: a review,” Ind. Eng. Chem. Res. 44, 5873–5931 (2005).
[Crossref]

Karapantsios, T. D.

K. Samaras, M. Kostoglou, T. D. Karapantsios, and P. Mavros, “Effect of adding glycerol and Tween 80 on gas holdup and bubble size distribution in an aerated stirred tank,” Colloids Surf. A 441, 815–824 (2014).
[Crossref]

Kiambi, S. L.

S. L. Kiambi, A. M. Duquenne, A. Bascoul, and H. Delmas, “Measurements of local interfacial area: application of bi-optical fibre technique,” Chem. Eng. Sci. 56, 6447–6453 (2001).
[Crossref]

Kostoglou, M.

K. Samaras, M. Kostoglou, T. D. Karapantsios, and P. Mavros, “Effect of adding glycerol and Tween 80 on gas holdup and bubble size distribution in an aerated stirred tank,” Colloids Surf. A 441, 815–824 (2014).
[Crossref]

Kulkarni, A. A.

A. A. Kulkarni and J. B. Joshi, “Bubble formation and bubble rise velocity in gas-liquid systems: a review,” Ind. Eng. Chem. Res. 44, 5873–5931 (2005).
[Crossref]

Kyriacou, P. A.

J. J. Davenport, M. Hickey, J. P. Phillips, and P. A. Kyriacou, “Method for producing angled optical fiber tips in the laboratory,” Opt. Eng. 55, 026120 (2016).
[Crossref]

Lenn, C. P.

E. J. Fordham, S. Simonian, R. T. Ramos, A. Holmes, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre optical probes. II. Gas/liquid flows,” Meas. Sci. Technol. 10, 1338–1346 (1999).
[Crossref]

Lewis, E.

Y. Ma, C. Muilwijk, Y. J. Yan, X. Zhang, H. P. Li, T. C. Xie, Z. Qin, W. M. Sun, and E. Lewis, “Measurement of bubble flow frequency in chemical processes using an optical fiber sensor,” in 17th IEEE Sensors Conference (2018), pp. 298–301.

Leysen, W.

C. Corazza, K. Rosseel, W. Leysen, K. Gladinez, A. Marino, J. Lim, and A. Aerts, “Optical fibre void fraction detection for liquid metal fast neutron reactors,” Exp. Therm. Fluid Sci. 113, 109865 (2020).
[Crossref]

Li, H. P.

Y. Ma, C. Muilwijk, Y. J. Yan, X. Zhang, H. P. Li, T. C. Xie, Z. Qin, W. M. Sun, and E. Lewis, “Measurement of bubble flow frequency in chemical processes using an optical fiber sensor,” in 17th IEEE Sensors Conference (2018), pp. 298–301.

Li, Y.

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref]

Lia, Q.

N. Zhong, Q. Lia, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref]

Liao, Q.

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref]

Lim, J.

C. Corazza, K. Rosseel, W. Leysen, K. Gladinez, A. Marino, J. Lim, and A. Aerts, “Optical fibre void fraction detection for liquid metal fast neutron reactors,” Exp. Therm. Fluid Sci. 113, 109865 (2020).
[Crossref]

Luo, B.

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref]

Lv, R. Q.

R. Q. Lv, H. K. Zheng, Y. Zhao, and Y. F. Gu, “An optical fiber sensor for simultaneous measurement of flow rate and temperature in the pipeline,” Opt. Fiber Technol. 45, 313–318 (2018).
[Crossref]

Ma, Y.

Y. Ma, C. Muilwijk, Y. J. Yan, X. Zhang, H. P. Li, T. C. Xie, Z. Qin, W. M. Sun, and E. Lewis, “Measurement of bubble flow frequency in chemical processes using an optical fiber sensor,” in 17th IEEE Sensors Conference (2018), pp. 298–301.

Marino, A.

C. Corazza, K. Rosseel, W. Leysen, K. Gladinez, A. Marino, J. Lim, and A. Aerts, “Optical fibre void fraction detection for liquid metal fast neutron reactors,” Exp. Therm. Fluid Sci. 113, 109865 (2020).
[Crossref]

Mavros, P.

K. Samaras, M. Kostoglou, T. D. Karapantsios, and P. Mavros, “Effect of adding glycerol and Tween 80 on gas holdup and bubble size distribution in an aerated stirred tank,” Colloids Surf. A 441, 815–824 (2014).
[Crossref]

Mesquita, E.

E. Mesquita, T. Paixão, P. Antunes, F. Coelho, P. Ferreira, P. André, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sens. Actuators A 240, 138–144 (2016).
[Crossref]

Miller, N.

N. Miller and R. E. Mitchie, “Measurement of local voidage in liquid/gas two-phase flow systems,” J. Brit. Nucl. Energy Soc. 9, 94–100 (1970).

Mitchie, R. E.

N. Miller and R. E. Mitchie, “Measurement of local voidage in liquid/gas two-phase flow systems,” J. Brit. Nucl. Energy Soc. 9, 94–100 (1970).

Mizushima, Y.

Y. Mizushima and T. Saito, “Detection method of a position pierced by a single-tip optical fibre probe in bubble measurement,” Meas. Sci. Technol. 23, 85308 (2012).
[Crossref]

Mouaze, D.

F. Murzyn, D. Mouaze, and J. R. Chaplin, “Optical fibre probe measurements of bubbly flow in hydraulic jumps,” Int. J. Multiph. Flow 31, 141–154 (2005).
[Crossref]

Muilwijk, C.

Y. Ma, C. Muilwijk, Y. J. Yan, X. Zhang, H. P. Li, T. C. Xie, Z. Qin, W. M. Sun, and E. Lewis, “Measurement of bubble flow frequency in chemical processes using an optical fiber sensor,” in 17th IEEE Sensors Conference (2018), pp. 298–301.

Muramatsu, H.

T. Saito, K. Sato, A. Nihei, and H. Muramatsu, “Improvement of optical fiber probing in multiphase systems, and the possibility of practical application in chemical engineering processes,” J. Chem. Eng. Jpn. 51, 331–341 (2018).
[Crossref]

Murzyn, F.

F. Murzyn, D. Mouaze, and J. R. Chaplin, “Optical fibre probe measurements of bubbly flow in hydraulic jumps,” Int. J. Multiph. Flow 31, 141–154 (2005).
[Crossref]

Nihei, A.

T. Saito, K. Sato, A. Nihei, and H. Muramatsu, “Improvement of optical fiber probing in multiphase systems, and the possibility of practical application in chemical engineering processes,” J. Chem. Eng. Jpn. 51, 331–341 (2018).
[Crossref]

Paixão, T.

E. Mesquita, T. Paixão, P. Antunes, F. Coelho, P. Ferreira, P. André, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sens. Actuators A 240, 138–144 (2016).
[Crossref]

Phillips, J. P.

J. J. Davenport, M. Hickey, J. P. Phillips, and P. A. Kyriacou, “Method for producing angled optical fiber tips in the laboratory,” Opt. Eng. 55, 026120 (2016).
[Crossref]

Qin, Z.

Y. Ma, C. Muilwijk, Y. J. Yan, X. Zhang, H. P. Li, T. C. Xie, Z. Qin, W. M. Sun, and E. Lewis, “Measurement of bubble flow frequency in chemical processes using an optical fiber sensor,” in 17th IEEE Sensors Conference (2018), pp. 298–301.

Ramos, R. T.

E. J. Fordham, S. Simonian, R. T. Ramos, A. Holmes, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre optical probes. II. Gas/liquid flows,” Meas. Sci. Technol. 10, 1338–1346 (1999).
[Crossref]

Rosseel, K.

C. Corazza, K. Rosseel, W. Leysen, K. Gladinez, A. Marino, J. Lim, and A. Aerts, “Optical fibre void fraction detection for liquid metal fast neutron reactors,” Exp. Therm. Fluid Sci. 113, 109865 (2020).
[Crossref]

Saito, T.

T. Saito, K. Sato, A. Nihei, and H. Muramatsu, “Improvement of optical fiber probing in multiphase systems, and the possibility of practical application in chemical engineering processes,” J. Chem. Eng. Jpn. 51, 331–341 (2018).
[Crossref]

A. Sakamoto and T. Saito, “Robust algorithms for quantifying noisy signals of optical fiber probes employed in industrial-scale practical bubbly flows,” Int. J. Multiph. Flow. 41, 77–90 (2012).
[Crossref]

A. Sakamoto and T. Saito, “Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement,” Rev. Sci. Instrum. 83, 075107 (2012).
[Crossref]

Y. Mizushima and T. Saito, “Detection method of a position pierced by a single-tip optical fibre probe in bubble measurement,” Meas. Sci. Technol. 23, 85308 (2012).
[Crossref]

Sakamoto, A.

A. Sakamoto and T. Saito, “Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement,” Rev. Sci. Instrum. 83, 075107 (2012).
[Crossref]

A. Sakamoto and T. Saito, “Robust algorithms for quantifying noisy signals of optical fiber probes employed in industrial-scale practical bubbly flows,” Int. J. Multiph. Flow. 41, 77–90 (2012).
[Crossref]

Samaras, K.

K. Samaras, M. Kostoglou, T. D. Karapantsios, and P. Mavros, “Effect of adding glycerol and Tween 80 on gas holdup and bubble size distribution in an aerated stirred tank,” Colloids Surf. A 441, 815–824 (2014).
[Crossref]

Sato, K.

T. Saito, K. Sato, A. Nihei, and H. Muramatsu, “Improvement of optical fiber probing in multiphase systems, and the possibility of practical application in chemical engineering processes,” J. Chem. Eng. Jpn. 51, 331–341 (2018).
[Crossref]

Simonian, S.

E. J. Fordham, S. Simonian, R. T. Ramos, A. Holmes, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre optical probes. II. Gas/liquid flows,” Meas. Sci. Technol. 10, 1338–1346 (1999).
[Crossref]

Skea, A. F.

A. F. Skea and A. R. W. Hall, “Effects of gas leaks in oil flow on single-phase flowmeters,” Flow Meas. Instrum. 10, 145–150 (1999).
[Crossref]

Sun, W. M.

Y. Ma, C. Muilwijk, Y. J. Yan, X. Zhang, H. P. Li, T. C. Xie, Z. Qin, W. M. Sun, and E. Lewis, “Measurement of bubble flow frequency in chemical processes using an optical fiber sensor,” in 17th IEEE Sensors Conference (2018), pp. 298–301.

Sun, Z. Q.

Z. Q. Sun, Y. P. Chen, and H. Gong, “Classification of gas-liquid flow patterns by the norm entropy of wavelet decomposed pressure fluctuations across a bluff body,” Meas. Sci. Technol. 23, 125301 (2012).
[Crossref]

Thorn, R.

R. Thorn, G. A. Johansen, and B. T. Hjertaker, “Three-phase flow measurement in the petroleum industry,” Meas. Sci. Technol. 24, 012003 (2013).
[Crossref]

Varum, H.

E. Mesquita, T. Paixão, P. Antunes, F. Coelho, P. Ferreira, P. André, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sens. Actuators A 240, 138–144 (2016).
[Crossref]

Xiao, H.

J. Zhang, H. Xiao, and J. H. Dong, “Zeolite-coated optical fiber sensors for in situ detection of organics in gas and liquid phases,” Proc. SPIE 5993, 59930N (2005).
[Crossref]

Xie, T. C.

Y. Ma, C. Muilwijk, Y. J. Yan, X. Zhang, H. P. Li, T. C. Xie, Z. Qin, W. M. Sun, and E. Lewis, “Measurement of bubble flow frequency in chemical processes using an optical fiber sensor,” in 17th IEEE Sensors Conference (2018), pp. 298–301.

Yan, Y. J.

Y. Ma, C. Muilwijk, Y. J. Yan, X. Zhang, H. P. Li, T. C. Xie, Z. Qin, W. M. Sun, and E. Lewis, “Measurement of bubble flow frequency in chemical processes using an optical fiber sensor,” in 17th IEEE Sensors Conference (2018), pp. 298–301.

Zhang, J.

J. Zhang, H. Xiao, and J. H. Dong, “Zeolite-coated optical fiber sensors for in situ detection of organics in gas and liquid phases,” Proc. SPIE 5993, 59930N (2005).
[Crossref]

Zhang, X.

Y. Ma, C. Muilwijk, Y. J. Yan, X. Zhang, H. P. Li, T. C. Xie, Z. Qin, W. M. Sun, and E. Lewis, “Measurement of bubble flow frequency in chemical processes using an optical fiber sensor,” in 17th IEEE Sensors Conference (2018), pp. 298–301.

Zhao, M.

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref]

N. Zhong, Q. Lia, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref]

Zhao, Y.

R. Q. Lv, H. K. Zheng, Y. Zhao, and Y. F. Gu, “An optical fiber sensor for simultaneous measurement of flow rate and temperature in the pipeline,” Opt. Fiber Technol. 45, 313–318 (2018).
[Crossref]

Zheng, H. K.

R. Q. Lv, H. K. Zheng, Y. Zhao, and Y. F. Gu, “An optical fiber sensor for simultaneous measurement of flow rate and temperature in the pipeline,” Opt. Fiber Technol. 45, 313–318 (2018).
[Crossref]

Zhong, L.

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref]

Zhong, N.

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref]

N. Zhong, Q. Lia, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref]

Zhu, X.

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref]

N. Zhong, Q. Lia, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref]

Zimmer, G. A.

N. Abuaf, O. C. Jones, and G. A. Zimmer, “Optical probe for local void fraction and interface velocity measurements,” Rev. Sci. Instrum. 49, 1090–1094 (1978).
[Crossref]

Biosens. Bioelectron. (1)

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref]

Chem. Eng. Sci. (1)

S. L. Kiambi, A. M. Duquenne, A. Bascoul, and H. Delmas, “Measurements of local interfacial area: application of bi-optical fibre technique,” Chem. Eng. Sci. 56, 6447–6453 (2001).
[Crossref]

Colloids Surf. A (1)

K. Samaras, M. Kostoglou, T. D. Karapantsios, and P. Mavros, “Effect of adding glycerol and Tween 80 on gas holdup and bubble size distribution in an aerated stirred tank,” Colloids Surf. A 441, 815–824 (2014).
[Crossref]

Exp. Therm. Fluid Sci. (1)

C. Corazza, K. Rosseel, W. Leysen, K. Gladinez, A. Marino, J. Lim, and A. Aerts, “Optical fibre void fraction detection for liquid metal fast neutron reactors,” Exp. Therm. Fluid Sci. 113, 109865 (2020).
[Crossref]

Flow Meas. Instrum. (1)

A. F. Skea and A. R. W. Hall, “Effects of gas leaks in oil flow on single-phase flowmeters,” Flow Meas. Instrum. 10, 145–150 (1999).
[Crossref]

Ind. Eng. Chem. Res. (1)

A. A. Kulkarni and J. B. Joshi, “Bubble formation and bubble rise velocity in gas-liquid systems: a review,” Ind. Eng. Chem. Res. 44, 5873–5931 (2005).
[Crossref]

Int. J. Multiph. Flow (1)

F. Murzyn, D. Mouaze, and J. R. Chaplin, “Optical fibre probe measurements of bubbly flow in hydraulic jumps,” Int. J. Multiph. Flow 31, 141–154 (2005).
[Crossref]

Int. J. Multiph. Flow. (1)

A. Sakamoto and T. Saito, “Robust algorithms for quantifying noisy signals of optical fiber probes employed in industrial-scale practical bubbly flows,” Int. J. Multiph. Flow. 41, 77–90 (2012).
[Crossref]

J. Brit. Nucl. Energy Soc. (1)

N. Miller and R. E. Mitchie, “Measurement of local voidage in liquid/gas two-phase flow systems,” J. Brit. Nucl. Energy Soc. 9, 94–100 (1970).

J. Chem. Eng. Jpn. (1)

T. Saito, K. Sato, A. Nihei, and H. Muramatsu, “Improvement of optical fiber probing in multiphase systems, and the possibility of practical application in chemical engineering processes,” J. Chem. Eng. Jpn. 51, 331–341 (2018).
[Crossref]

Meas. Sci. Technol. (4)

Y. Mizushima and T. Saito, “Detection method of a position pierced by a single-tip optical fibre probe in bubble measurement,” Meas. Sci. Technol. 23, 85308 (2012).
[Crossref]

E. J. Fordham, S. Simonian, R. T. Ramos, A. Holmes, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre optical probes. II. Gas/liquid flows,” Meas. Sci. Technol. 10, 1338–1346 (1999).
[Crossref]

Z. Q. Sun, Y. P. Chen, and H. Gong, “Classification of gas-liquid flow patterns by the norm entropy of wavelet decomposed pressure fluctuations across a bluff body,” Meas. Sci. Technol. 23, 125301 (2012).
[Crossref]

R. Thorn, G. A. Johansen, and B. T. Hjertaker, “Three-phase flow measurement in the petroleum industry,” Meas. Sci. Technol. 24, 012003 (2013).
[Crossref]

Mes. Regul. Autom. (1)

F. Danel and J. M. Delhaye, “Sonde optique pour la mesure du taux de présence local en écoulement diphasique,” Mes. Regul. Autom. 36, 99–101 (1971).

Opt. Eng. (1)

J. J. Davenport, M. Hickey, J. P. Phillips, and P. A. Kyriacou, “Method for producing angled optical fiber tips in the laboratory,” Opt. Eng. 55, 026120 (2016).
[Crossref]

Opt. Fiber Technol. (1)

R. Q. Lv, H. K. Zheng, Y. Zhao, and Y. F. Gu, “An optical fiber sensor for simultaneous measurement of flow rate and temperature in the pipeline,” Opt. Fiber Technol. 45, 313–318 (2018).
[Crossref]

Proc. SPIE (1)

J. Zhang, H. Xiao, and J. H. Dong, “Zeolite-coated optical fiber sensors for in situ detection of organics in gas and liquid phases,” Proc. SPIE 5993, 59930N (2005).
[Crossref]

Rev. Sci. Instrum. (3)

A. Cartellier, “Simultaneous void fraction measurement, bubble velocity, and size estimate using a single optical probe in gas–liquid two-phase flows,” Rev. Sci. Instrum. 63, 5442–5453 (1992).
[Crossref]

A. Sakamoto and T. Saito, “Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement,” Rev. Sci. Instrum. 83, 075107 (2012).
[Crossref]

N. Abuaf, O. C. Jones, and G. A. Zimmer, “Optical probe for local void fraction and interface velocity measurements,” Rev. Sci. Instrum. 49, 1090–1094 (1978).
[Crossref]

Sci. Rep. (1)

N. Zhong, Q. Lia, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref]

Sens. Actuators A (1)

E. Mesquita, T. Paixão, P. Antunes, F. Coelho, P. Ferreira, P. André, and H. Varum, “Groundwater level monitoring using a plastic optical fiber,” Sens. Actuators A 240, 138–144 (2016).
[Crossref]

Other (1)

Y. Ma, C. Muilwijk, Y. J. Yan, X. Zhang, H. P. Li, T. C. Xie, Z. Qin, W. M. Sun, and E. Lewis, “Measurement of bubble flow frequency in chemical processes using an optical fiber sensor,” in 17th IEEE Sensors Conference (2018), pp. 298–301.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematic drawing of the fiber-optic coupler system.
Fig. 2.
Fig. 2. Experimental apparatus for bubble measurement. (a) Air compressor; (b) flow controller; (c) rectangular vessel; (d) optical fiber sensing system; (e) signal acquisition system; (f) laser emitter; (g) PC; (h) stainless-steel capillary.
Fig. 3.
Fig. 3. Configuration of optical model system. (a) Bubble (air); (b) optical fiber core; (c) optical fiber cladding; (d) illuminant; (e) water.
Fig. 4.
Fig. 4. Computational result of the relationship between reflectivity and the angle of fiber tips in the air.
Fig. 5.
Fig. 5. Photograph of a fabricated fiber sensing tip.
Fig. 6.
Fig. 6. (a) Schematic of fiber probe piercing position; (b) output signal when the piercing position was proximate as Case 1 in (a); (c) output signal when the piercing position was proximate as Case 2 in (a); (d) output signal when the piercing position was proximate as Case 3 in (a).
Fig. 7.
Fig. 7. (a) Simulation results of piercing a single bubble; (b) deconstruction of the pre-signal.
Fig. 8.
Fig. 8. Position of the probe relative to the simulated light detector. (a) Fiber probe; (b) luminous intensity detector.
Fig. 9.
Fig. 9. Luminous intensity distribution from the fiber tip with different detection ranges.
Fig. 10.
Fig. 10. Position of the fiber probe relative to the bubble. (a) Fiber probe; (b) bubble; (c) luminous intensity detector.
Fig. 11.
Fig. 11. Luminous intensity distribution of the reflected light from the bubble surface corresponding to the shifting position (on the $x$-axis) of the fiber probe; (a) 0; (b) ${-}{0.3}\;{\rm{mm}}$; (c) 0.3 mm; (d) ${-}{0.6}\;{\rm{mm}}$; (e) 0.6 mm; (f) ${-}{0.9}\;{\rm{mm}}$; (g) 0.9 mm.
Fig. 12.
Fig. 12. Luminous intensity of reflected light that reached the fiber probe varying with fiber positions.

Tables (1)

Tables Icon

Table 1. Detailed Parameters of the Optical Model

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n 1 sin ( θ 1 ) = n 2 sin ( θ 2 ) .
R p = r p 2 = [ n 1 cos ( θ 2 ) n 2 cos ( θ 1 ) n 1 cos ( θ 2 ) + n 2 cos ( θ 1 ) ] 2 = tan 2 ( θ 1 θ 2 ) tan 2 ( θ 1 + θ 2 ) ,
R s = r s 2 = [ n 1 cos ( θ 1 ) n 2 cos ( θ 2 ) n 1 cos ( θ 1 ) + n 2 cos ( θ 2 ) ] 2 = sin 2 ( θ 1 θ 2 ) sin 2 ( θ 1 + θ 2 ) .
T p = t p 2 = [ 2 n 1 cos ( θ 1 ) n 1 cos ( θ 2 ) + n 2 cos ( θ 1 ) ] 2 = sin ( 2 θ 1 ) sin ( 2 θ 2 ) sin 2 ( θ 1 + θ 2 ) cos 2 ( θ 1 θ 2 ) ,
T s = t s 2 = [ 2 n 1 cos ( θ 1 ) n 1 cos ( θ 1 ) + n 2 cos ( θ 2 ) ] 2 = sin ( 2 θ 1 ) sin ( 2 θ 2 ) sin 2 ( θ 1 + θ 2 ) .