Abstract

In this paper, a tunable, two-dimensional periodic structure based on guided-mode resonance (GMR) is proposed. This element can be employed as a tunable optical filter or a display pixel. Resonance tuning in this device is accomplished through perturbation in the refractive index profile and element’s thickness, conceptually by a micro-electro-mechanical system mechanism. Simulation results show that resonance wavelength tunings of 48nm (522–570 nm) and 17nm (526–543 nm) are achieved by physical movement of 166 nm horizontally and 300 nm vertically, respectively. The proposed device can fairly maintain its tunability under ±5° deviations in the angle of incidence.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional grating guided-mode resonance tunable filter

Wen-Kai Kuo and Che-Jung Hsu
Opt. Express 25(24) 29642-29649 (2017)

Widely tunable guided-mode resonance nanoelectromechanical RGB pixels

Robert Magnusson and Mehrdad Shokooh-Saremi
Opt. Express 15(17) 10903-10910 (2007)

Multiline two-dimensional guided-mode resonant filters

Sakoolkan Boonruang, Andrew Greenwell, and M. G. Moharam
Appl. Opt. 45(22) 5740-5747 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
    [Crossref]
  2. A. Hessel and A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [Crossref]
  3. R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
    [Crossref]
  4. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
    [Crossref]
  5. R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photonics Technol. Lett. 18, 1479–1481 (2006).
    [Crossref]
  6. L. Qian, D. Zhang, B. Dai, Y. Huang, C. Tao, R. Hong, and S. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid crystal polarization rotator,” Opt. Lett. 40, 713–716 (2015).
    [Crossref]
  7. M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25, 1412–1415 (2013).
    [Crossref]
  8. R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15, 10903–10910 (2007).
    [Crossref]
  9. D. Wawro, S. Tibuleac, and R. Magnusson, “Optical waveguide-mode resonant biosensors,” in Optical Imaging Sensors and Systems for Homeland Security Applications (Springer, 2006), pp. 367–384.
  10. G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent advances in resonant waveguide gratings,” Laser Photonics Rev. 12, 1800017 (2018).
    [Crossref]
  11. J. Ma, “Advanced MEMS-based technologies and displays,” Displays 37, 2–10 (2015).
    [Crossref]
  12. Y. Wu, Z. Xia, Z. Wang, R. Liu, P. Tang, G. Lv, and H. Wu, “Nonpolarizing and tunable perpendicular dual-grating guided-mode resonance filter,” Opt. Commun. 285, 2840–2845 (2012).
    [Crossref]
  13. C. Fang, B. Dai, Z. Li, A. Zahid, Q. Wang, B. Sheng, and D. Zhang, “Tunable guided-mode resonance filter with a gradient grating period fabricated by casting a stretched PDMS grating wedge,” Opt. Lett. 41, 5302–5305 (2016).
    [Crossref]
  14. W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
    [Crossref]
  15. W. Suh, M. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
    [Crossref]
  16. Y. Kanamori, T. Kitani, and K. Hane, “Movable guided-mode resonant grating filters by four bimorph actuators for wavelength selective dynamic reflection control,” in IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference (IEEE, 2006), pp. 68–69.
  17. J. Liu, H. Chen, X. Jing, and Z. Hong, “Guided mode resonance in terahertz compound metamaterial waveguides,” Optik 173, 39–43 (2018).
    [Crossref]
  18. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [Crossref]
  19. S. Boonruang, “Two-dimensional guided mode resonant structures for spectral filtering applications,” Ph.D. dissertation (University of Central Florida, 2007).
  20. Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135–1137 (2004).
    [Crossref]
  21. Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflectors and their correlation with spectra of one-dimensional equivalents,” IEEE Photonics J. 7, 1–10 (2015).
    [Crossref]
  22. I. Avrutsky and V. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527–1539 (1989).
    [Crossref]

2018 (2)

G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent advances in resonant waveguide gratings,” Laser Photonics Rev. 12, 1800017 (2018).
[Crossref]

J. Liu, H. Chen, X. Jing, and Z. Hong, “Guided mode resonance in terahertz compound metamaterial waveguides,” Optik 173, 39–43 (2018).
[Crossref]

2016 (1)

2015 (3)

Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflectors and their correlation with spectra of one-dimensional equivalents,” IEEE Photonics J. 7, 1–10 (2015).
[Crossref]

J. Ma, “Advanced MEMS-based technologies and displays,” Displays 37, 2–10 (2015).
[Crossref]

L. Qian, D. Zhang, B. Dai, Y. Huang, C. Tao, R. Hong, and S. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid crystal polarization rotator,” Opt. Lett. 40, 713–716 (2015).
[Crossref]

2013 (1)

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25, 1412–1415 (2013).
[Crossref]

2012 (1)

Y. Wu, Z. Xia, Z. Wang, R. Liu, P. Tang, G. Lv, and H. Wu, “Nonpolarizing and tunable perpendicular dual-grating guided-mode resonance filter,” Opt. Commun. 285, 2840–2845 (2012).
[Crossref]

2011 (1)

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
[Crossref]

2007 (1)

2006 (1)

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photonics Technol. Lett. 18, 1479–1481 (2006).
[Crossref]

2004 (2)

Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135–1137 (2004).
[Crossref]

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
[Crossref]

2003 (1)

W. Suh, M. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
[Crossref]

1997 (2)

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
[Crossref]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

1993 (1)

1989 (1)

I. Avrutsky and V. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527–1539 (1989).
[Crossref]

1965 (1)

Avrutsky, I.

I. Avrutsky and V. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527–1539 (1989).
[Crossref]

Basset, G.

G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent advances in resonant waveguide gratings,” Laser Photonics Rev. 12, 1800017 (2018).
[Crossref]

Boonruang, S.

S. Boonruang, “Two-dimensional guided mode resonant structures for spectral filtering applications,” Ph.D. dissertation (University of Central Florida, 2007).

Chen, H.

J. Liu, H. Chen, X. Jing, and Z. Hong, “Guided mode resonance in terahertz compound metamaterial waveguides,” Optik 173, 39–43 (2018).
[Crossref]

Curzan, J.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
[Crossref]

Dai, B.

Ding, Y.

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photonics Technol. Lett. 18, 1479–1481 (2006).
[Crossref]

Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135–1137 (2004).
[Crossref]

Fan, S.

W. Suh, M. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
[Crossref]

Fang, C.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

Gallinet, B.

G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent advances in resonant waveguide gratings,” Laser Photonics Rev. 12, 1800017 (2018).
[Crossref]

Hane, K.

Y. Kanamori, T. Kitani, and K. Hane, “Movable guided-mode resonant grating filters by four bimorph actuators for wavelength selective dynamic reflection control,” in IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference (IEEE, 2006), pp. 68–69.

Hessel, A.

Hong, R.

Hong, Z.

J. Liu, H. Chen, X. Jing, and Z. Hong, “Guided mode resonance in terahertz compound metamaterial waveguides,” Optik 173, 39–43 (2018).
[Crossref]

Huang, Y.

Jing, X.

J. Liu, H. Chen, X. Jing, and Z. Hong, “Guided mode resonance in terahertz compound metamaterial waveguides,” Optik 173, 39–43 (2018).
[Crossref]

Kanamori, Y.

Y. Kanamori, T. Kitani, and K. Hane, “Movable guided-mode resonant grating filters by four bimorph actuators for wavelength selective dynamic reflection control,” in IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference (IEEE, 2006), pp. 68–69.

Kitani, T.

Y. Kanamori, T. Kitani, and K. Hane, “Movable guided-mode resonant grating filters by four bimorph actuators for wavelength selective dynamic reflection control,” in IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference (IEEE, 2006), pp. 68–69.

Ko, Y. H.

Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflectors and their correlation with spectra of one-dimensional equivalents,” IEEE Photonics J. 7, 1–10 (2015).
[Crossref]

Lee, J.-B.

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
[Crossref]

Lee, K. J.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
[Crossref]

Li, L.

Li, Z.

Liu, J.

J. Liu, H. Chen, X. Jing, and Z. Hong, “Guided mode resonance in terahertz compound metamaterial waveguides,” Optik 173, 39–43 (2018).
[Crossref]

Liu, R.

Y. Wu, Z. Xia, Z. Wang, R. Liu, P. Tang, G. Lv, and H. Wu, “Nonpolarizing and tunable perpendicular dual-grating guided-mode resonance filter,” Opt. Commun. 285, 2840–2845 (2012).
[Crossref]

Lv, G.

Y. Wu, Z. Xia, Z. Wang, R. Liu, P. Tang, G. Lv, and H. Wu, “Nonpolarizing and tunable perpendicular dual-grating guided-mode resonance filter,” Opt. Commun. 285, 2840–2845 (2012).
[Crossref]

Ma, J.

J. Ma, “Advanced MEMS-based technologies and displays,” Displays 37, 2–10 (2015).
[Crossref]

Magnusson, R.

Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflectors and their correlation with spectra of one-dimensional equivalents,” IEEE Photonics J. 7, 1–10 (2015).
[Crossref]

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25, 1412–1415 (2013).
[Crossref]

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
[Crossref]

R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15, 10903–10910 (2007).
[Crossref]

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photonics Technol. Lett. 18, 1479–1481 (2006).
[Crossref]

Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135–1137 (2004).
[Crossref]

S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
[Crossref]

D. Wawro, S. Tibuleac, and R. Magnusson, “Optical waveguide-mode resonant biosensors,” in Optical Imaging Sensors and Systems for Homeland Security Applications (Springer, 2006), pp. 367–384.

Martin, O. J. F.

G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent advances in resonant waveguide gratings,” Laser Photonics Rev. 12, 1800017 (2018).
[Crossref]

Oliner, A.

Park, W.

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
[Crossref]

Qian, L.

Quaranta, G.

G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent advances in resonant waveguide gratings,” Laser Photonics Rev. 12, 1800017 (2018).
[Crossref]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

Sheng, B.

Shokooh-Saremi, M.

Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflectors and their correlation with spectra of one-dimensional equivalents,” IEEE Photonics J. 7, 1–10 (2015).
[Crossref]

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
[Crossref]

R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15, 10903–10910 (2007).
[Crossref]

Solgaard, O.

W. Suh, M. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
[Crossref]

Song, S. H.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
[Crossref]

Suh, W.

W. Suh, M. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
[Crossref]

Svavarsson, H. G.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
[Crossref]

Sychugov, V.

I. Avrutsky and V. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527–1539 (1989).
[Crossref]

Tang, P.

Y. Wu, Z. Xia, Z. Wang, R. Liu, P. Tang, G. Lv, and H. Wu, “Nonpolarizing and tunable perpendicular dual-grating guided-mode resonance filter,” Opt. Commun. 285, 2840–2845 (2012).
[Crossref]

Tao, C.

Tibuleac, S.

D. Wawro, S. Tibuleac, and R. Magnusson, “Optical waveguide-mode resonant biosensors,” in Optical Imaging Sensors and Systems for Homeland Security Applications (Springer, 2006), pp. 367–384.

Uddin, M. J.

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25, 1412–1415 (2013).
[Crossref]

Wang, Q.

Wang, S.

Wang, Z.

Y. Wu, Z. Xia, Z. Wang, R. Liu, P. Tang, G. Lv, and H. Wu, “Nonpolarizing and tunable perpendicular dual-grating guided-mode resonance filter,” Opt. Commun. 285, 2840–2845 (2012).
[Crossref]

Wawro, D.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
[Crossref]

D. Wawro, S. Tibuleac, and R. Magnusson, “Optical waveguide-mode resonant biosensors,” in Optical Imaging Sensors and Systems for Homeland Security Applications (Springer, 2006), pp. 367–384.

Wu, H.

Y. Wu, Z. Xia, Z. Wang, R. Liu, P. Tang, G. Lv, and H. Wu, “Nonpolarizing and tunable perpendicular dual-grating guided-mode resonance filter,” Opt. Commun. 285, 2840–2845 (2012).
[Crossref]

Wu, W.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
[Crossref]

Wu, Y.

Y. Wu, Z. Xia, Z. Wang, R. Liu, P. Tang, G. Lv, and H. Wu, “Nonpolarizing and tunable perpendicular dual-grating guided-mode resonance filter,” Opt. Commun. 285, 2840–2845 (2012).
[Crossref]

Xia, Z.

Y. Wu, Z. Xia, Z. Wang, R. Liu, P. Tang, G. Lv, and H. Wu, “Nonpolarizing and tunable perpendicular dual-grating guided-mode resonance filter,” Opt. Commun. 285, 2840–2845 (2012).
[Crossref]

Yanik, M.

W. Suh, M. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
[Crossref]

Yoon, J.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
[Crossref]

Zahid, A.

Zhang, D.

Zhuang, S.

Zimmerman, S.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
[Crossref]

W. Suh, M. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
[Crossref]

Displays (1)

J. Ma, “Advanced MEMS-based technologies and displays,” Displays 37, 2–10 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

IEEE Photonics J. (1)

Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflectors and their correlation with spectra of one-dimensional equivalents,” IEEE Photonics J. 7, 1–10 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photonics Technol. Lett. 18, 1479–1481 (2006).
[Crossref]

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25, 1412–1415 (2013).
[Crossref]

J. Mod. Opt. (1)

I. Avrutsky and V. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527–1539 (1989).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent advances in resonant waveguide gratings,” Laser Photonics Rev. 12, 1800017 (2018).
[Crossref]

Opt. Commun. (1)

Y. Wu, Z. Xia, Z. Wang, R. Liu, P. Tang, G. Lv, and H. Wu, “Nonpolarizing and tunable perpendicular dual-grating guided-mode resonance filter,” Opt. Commun. 285, 2840–2845 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Optik (1)

J. Liu, H. Chen, X. Jing, and Z. Hong, “Guided mode resonance in terahertz compound metamaterial waveguides,” Optik 173, 39–43 (2018).
[Crossref]

Proc. SPIE (1)

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE 8102, 810202 (2011).
[Crossref]

Other (3)

D. Wawro, S. Tibuleac, and R. Magnusson, “Optical waveguide-mode resonant biosensors,” in Optical Imaging Sensors and Systems for Homeland Security Applications (Springer, 2006), pp. 367–384.

S. Boonruang, “Two-dimensional guided mode resonant structures for spectral filtering applications,” Ph.D. dissertation (University of Central Florida, 2007).

Y. Kanamori, T. Kitani, and K. Hane, “Movable guided-mode resonant grating filters by four bimorph actuators for wavelength selective dynamic reflection control,” in IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference (IEEE, 2006), pp. 68–69.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Proposed structure of the 2D tunable filter based on the GMR effect. (a) Three-dimensional view of the structure; (b),(c) cross-sectional views of the element in the xy and xz planes, respectively. The parameters used for analysis are Λx=Λy=Λ=0.353μm, D1=0.33Λ, D2=0.8Λ, and d=0.545μm.
Fig. 2.
Fig. 2. Schematic view of incident angles and direction. k¯ is the wave vector that specifies incident direction. δ, θ, and ψ are azimuthal, incident, and polarization angles, respectively.
Fig. 3.
Fig. 3. (a) Reflection spectra of the element at the symmetry point (x1=0, y1=0) for the P-polarized incident wave. Field distributions in the xz plane (at y=0) with the peak resonances at (b) λ=483nm, (c) λ=499nm, and (d) λ=543nm.
Fig. 4.
Fig. 4. 2D map of resonance tuning for the P-polarized incident wave (a) R(λ,x1) while y1=0 and x1 is variable and (b) R(λ,y1) while x1=0 and y1 is variable.
Fig. 5.
Fig. 5. Sample reflection spectra for different x1 and y1 of Fig. 4; (a) y1=0 and (b) x1=0. Incident wave is P-polarized.
Fig. 6.
Fig. 6. Field distributions in (a) xy (z=d/2) and (b) xz (y=0) planes when the movable part is located at (x1=0, y1=0) with the peak resonance at λ=543nm; (c),(d) when it is located at (x1=0.083μm, y1=0) with the peak resonance at λ=570nm; and (e) xy (z=d/2) and (f) xz (y=0.083μm) planes when it is placed at (x1=0, y1=0.083μm) with peak resonance at λ=522nm. Incident wave is P-polarized.
Fig. 7.
Fig. 7. 2D map of resonance tuning for (a) ψ=45° (θ=δ=0°) polarized incident wave (R(λ,x1=y1)) while x1=y1 and both of them are variable between 0.083μm and +0.083μm and (b) ψ=30° (R(λ,x1)) while y1=0 and x1 is variable.
Fig. 8.
Fig. 8. Sensitivity to the incident angle (θ) deviations (δ=0°) for the P-polarized wave while the inner part is set at (a) the symmetry point and when it is moved toward points (b) (x1=0.083μm, y1=0) and (c) (x1=0, y1=0.083μm).
Fig. 9.
Fig. 9. Schematic view of the vertical movement along the z axis.
Fig. 10.
Fig. 10. Reflection map R(λ,z1) of vertical motion for the P-polarized incident wave, when the inner part is set at the symmetry point.
Fig. 11.
Fig. 11. (a) Reflection spectrum and (b) field distribution for the resonance wavelength λ=536.8nm and the position at (x1=0, y1=0, z1=0.2μm). Incident wave is P-polarized.

Metrics