Abstract

The aim of this study was to determine characteristic frequencies of corneal vibrations occurring during air-puff intraocular pressure (IOP) measurement using the Corvis ST tonometer. Relations of frequency of the corneal vibrations with IOP were examined. Two selected vibration frequencies—frequency with maximum amplitude, and mass center of the frequency distribution area, for which the amplitude was higher than 50% (CM50)—present significant correlations with non-corrected IOP and biomechanical corrected IOP (bIOP). The highest correlation was found between the mean values of CM50 and bIOP (r=0.91). Based on the results obtained, it can be stated that the vibration frequencies of corneal peaks are closely related to the measured non-corrected and biomechanical corrected IOPs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system

David Alonso-Caneiro, Karol Karnowski, Bartlomiej J. Kaluzny, Andrzej Kowalczyk, and Maciej Wojtkowski
Opt. Express 19(15) 14188-14199 (2011)

Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas

Carlos Dorronsoro, Daniel Pascual, Pablo Pérez-Merino, Sabine Kling, and Susana Marcos
Biomed. Opt. Express 3(3) 473-487 (2012)

High-speed OCT-based ocular biometer combined with an air-puff system for determination of induced retraction-free eye dynamics

Alfonso Jiménez-villar, Ewa Mączyńska, Artur Cichański, Maciej Wojtkowski, Bartłomiej J. Kałużny, and Ireneusz Grulkowski
Biomed. Opt. Express 10(7) 3663-3680 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. London, R. Schmieder, and C. Calvo, “Applanation tonometry,” J. Hypertens. 22, S275 (2004).
    [Crossref]
  2. D. A. Luce, “Method and apparatus for determining true intraocular pressure,” U.S. patent7,909,765 B2 (March22, 2011).
  3. D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31, 156–162 (2005).
    [Crossref]
  4. A. A. Joda, M. M. S. Shervin, D. Kook, and A. Elsheikh, “Development and validation of a correction equation for Corvis tonometry,” Comput. Methods Biomech. Biomed. Eng. 19, 1–11 (2016).
    [Crossref]
  5. A. Boszczyk, H. Kasprzak, and A. Jozwik, “Eye retraction and rotation during Corvis ST ‘air puff’ intraocular pressure measurement and its quantitative analysis,” Ophthal. Physiol. Opt. 37, 253–262(2017).
    [Crossref]
  6. R. Koprowski, R. Ambrósio, and S. Reisdorf, “Scheimpflug camera in the quantitative assessment of reproducibility of high-speed corneal deformation during intraocular pressure measurement,” J. Biophoton. 8, 968–978 (2015).
    [Crossref]
  7. R. Koprowski, “Automatic method of analysis and measurement of additional parameters of corneal deformation in the Corvis tonometer,” Biomed. Eng. Online 13, 150 (2014).
    [Crossref]
  8. Z. Han, C. Tao, D. Zhou, Y. Sun, C. Zhou, Q. Ren, and C. J. Roberts, “Air puff induced corneal vibrations: theoretical simulations and clinical observations,” J. Refract. Surg. 30, 208–213 (2014).
    [Crossref]
  9. R. Koprowski and S. Wilczyński, “Corneal vibrations during intraocular pressure measurement with an air-puff method,” J. Healthcare Eng. 2018, 5705749 (2018).
    [Crossref]
  10. S. Kling, N. Bekesi, C. Dorronsoro, D. Pascual, and S. Marcos, “Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation,” PloS ONE 9, e104904 (2014).
    [Crossref]
  11. R. Koprowski and R. Ambrósio, “Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus,” Comput. Biol. Med. 66, 170–178 (2015).
    [Crossref]
  12. R. Farshidi, “Intraocular pressure measurements using vibration based non-contact tonometry,” M.Sc. thesis (University of Calgary, 2009).
  13. S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11, 20140920 (2014).
    [Crossref]
  14. C. E. T. Krakau, “A vibration tonometer,” Ophthal. Res. 1, 129–139 (1970).
    [Crossref]
  15. A. von Freyberg, M. Sorg, M. Fuhrmann, C. F. Kreiner, J. Pfannkuche, T. Klink, D. Hensler, F. Grehn, and G. Goch, “Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement,” J. Glaucoma 18, 316–320 (2009).
    [Crossref]
  16. http://www.oculus.de .
  17. H. Kasprzak and A. Boszczyk, “Numerical analysis of corneal curvature dynamics based on Corvis tonometer images,” J. Biophoton. 9, 436–444 (2016).
    [Crossref]
  18. J. M. Bland and D. G. Altman, “Calculating correlation coefficients with repeated observations: part 2—correlation between subjects,” BMJ 310, 633 (1995).
    [Crossref]
  19. J. M. Bland and D. G. Altman, “Statistics notes: measurement error,” BMJ 313, 744 (1996).
    [Crossref]
  20. S. A. Read, M. J. Collins, and L. G. Carney, “A review of astigmatism and its possible genesis,” Clin. Exp. Optom. 90, 5–19 (2007).
    [Crossref]
  21. M. A. Aloy, J. E. Adsuara, P. Cerda-Duran, M. Obergaulinger, J. J. Esteve-Taboada, T. Ferrer-Blasco, and R. Monte’s-Mico, “Estimation of the mechanical properties of the eye through the study of its vibrational modes,” PloS ONE 12, e0183892 (2017).
    [Crossref]

2018 (1)

R. Koprowski and S. Wilczyński, “Corneal vibrations during intraocular pressure measurement with an air-puff method,” J. Healthcare Eng. 2018, 5705749 (2018).
[Crossref]

2017 (2)

A. Boszczyk, H. Kasprzak, and A. Jozwik, “Eye retraction and rotation during Corvis ST ‘air puff’ intraocular pressure measurement and its quantitative analysis,” Ophthal. Physiol. Opt. 37, 253–262(2017).
[Crossref]

M. A. Aloy, J. E. Adsuara, P. Cerda-Duran, M. Obergaulinger, J. J. Esteve-Taboada, T. Ferrer-Blasco, and R. Monte’s-Mico, “Estimation of the mechanical properties of the eye through the study of its vibrational modes,” PloS ONE 12, e0183892 (2017).
[Crossref]

2016 (2)

A. A. Joda, M. M. S. Shervin, D. Kook, and A. Elsheikh, “Development and validation of a correction equation for Corvis tonometry,” Comput. Methods Biomech. Biomed. Eng. 19, 1–11 (2016).
[Crossref]

H. Kasprzak and A. Boszczyk, “Numerical analysis of corneal curvature dynamics based on Corvis tonometer images,” J. Biophoton. 9, 436–444 (2016).
[Crossref]

2015 (2)

R. Koprowski and R. Ambrósio, “Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus,” Comput. Biol. Med. 66, 170–178 (2015).
[Crossref]

R. Koprowski, R. Ambrósio, and S. Reisdorf, “Scheimpflug camera in the quantitative assessment of reproducibility of high-speed corneal deformation during intraocular pressure measurement,” J. Biophoton. 8, 968–978 (2015).
[Crossref]

2014 (4)

R. Koprowski, “Automatic method of analysis and measurement of additional parameters of corneal deformation in the Corvis tonometer,” Biomed. Eng. Online 13, 150 (2014).
[Crossref]

Z. Han, C. Tao, D. Zhou, Y. Sun, C. Zhou, Q. Ren, and C. J. Roberts, “Air puff induced corneal vibrations: theoretical simulations and clinical observations,” J. Refract. Surg. 30, 208–213 (2014).
[Crossref]

S. Kling, N. Bekesi, C. Dorronsoro, D. Pascual, and S. Marcos, “Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation,” PloS ONE 9, e104904 (2014).
[Crossref]

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11, 20140920 (2014).
[Crossref]

2009 (1)

A. von Freyberg, M. Sorg, M. Fuhrmann, C. F. Kreiner, J. Pfannkuche, T. Klink, D. Hensler, F. Grehn, and G. Goch, “Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement,” J. Glaucoma 18, 316–320 (2009).
[Crossref]

2007 (1)

S. A. Read, M. J. Collins, and L. G. Carney, “A review of astigmatism and its possible genesis,” Clin. Exp. Optom. 90, 5–19 (2007).
[Crossref]

2005 (1)

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31, 156–162 (2005).
[Crossref]

2004 (1)

G. London, R. Schmieder, and C. Calvo, “Applanation tonometry,” J. Hypertens. 22, S275 (2004).
[Crossref]

1996 (1)

J. M. Bland and D. G. Altman, “Statistics notes: measurement error,” BMJ 313, 744 (1996).
[Crossref]

1995 (1)

J. M. Bland and D. G. Altman, “Calculating correlation coefficients with repeated observations: part 2—correlation between subjects,” BMJ 310, 633 (1995).
[Crossref]

1970 (1)

C. E. T. Krakau, “A vibration tonometer,” Ophthal. Res. 1, 129–139 (1970).
[Crossref]

Adsuara, J. E.

M. A. Aloy, J. E. Adsuara, P. Cerda-Duran, M. Obergaulinger, J. J. Esteve-Taboada, T. Ferrer-Blasco, and R. Monte’s-Mico, “Estimation of the mechanical properties of the eye through the study of its vibrational modes,” PloS ONE 12, e0183892 (2017).
[Crossref]

Akca, I. B.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11, 20140920 (2014).
[Crossref]

Aloy, M. A.

M. A. Aloy, J. E. Adsuara, P. Cerda-Duran, M. Obergaulinger, J. J. Esteve-Taboada, T. Ferrer-Blasco, and R. Monte’s-Mico, “Estimation of the mechanical properties of the eye through the study of its vibrational modes,” PloS ONE 12, e0183892 (2017).
[Crossref]

Altman, D. G.

J. M. Bland and D. G. Altman, “Statistics notes: measurement error,” BMJ 313, 744 (1996).
[Crossref]

J. M. Bland and D. G. Altman, “Calculating correlation coefficients with repeated observations: part 2—correlation between subjects,” BMJ 310, 633 (1995).
[Crossref]

Ambrósio, R.

R. Koprowski and R. Ambrósio, “Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus,” Comput. Biol. Med. 66, 170–178 (2015).
[Crossref]

R. Koprowski, R. Ambrósio, and S. Reisdorf, “Scheimpflug camera in the quantitative assessment of reproducibility of high-speed corneal deformation during intraocular pressure measurement,” J. Biophoton. 8, 968–978 (2015).
[Crossref]

Bekesi, N.

S. Kling, N. Bekesi, C. Dorronsoro, D. Pascual, and S. Marcos, “Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation,” PloS ONE 9, e104904 (2014).
[Crossref]

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11, 20140920 (2014).
[Crossref]

Bland, J. M.

J. M. Bland and D. G. Altman, “Statistics notes: measurement error,” BMJ 313, 744 (1996).
[Crossref]

J. M. Bland and D. G. Altman, “Calculating correlation coefficients with repeated observations: part 2—correlation between subjects,” BMJ 310, 633 (1995).
[Crossref]

Boszczyk, A.

A. Boszczyk, H. Kasprzak, and A. Jozwik, “Eye retraction and rotation during Corvis ST ‘air puff’ intraocular pressure measurement and its quantitative analysis,” Ophthal. Physiol. Opt. 37, 253–262(2017).
[Crossref]

H. Kasprzak and A. Boszczyk, “Numerical analysis of corneal curvature dynamics based on Corvis tonometer images,” J. Biophoton. 9, 436–444 (2016).
[Crossref]

Calvo, C.

G. London, R. Schmieder, and C. Calvo, “Applanation tonometry,” J. Hypertens. 22, S275 (2004).
[Crossref]

Carney, L. G.

S. A. Read, M. J. Collins, and L. G. Carney, “A review of astigmatism and its possible genesis,” Clin. Exp. Optom. 90, 5–19 (2007).
[Crossref]

Cerda-Duran, P.

M. A. Aloy, J. E. Adsuara, P. Cerda-Duran, M. Obergaulinger, J. J. Esteve-Taboada, T. Ferrer-Blasco, and R. Monte’s-Mico, “Estimation of the mechanical properties of the eye through the study of its vibrational modes,” PloS ONE 12, e0183892 (2017).
[Crossref]

Chang, E. W.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11, 20140920 (2014).
[Crossref]

Collins, M. J.

S. A. Read, M. J. Collins, and L. G. Carney, “A review of astigmatism and its possible genesis,” Clin. Exp. Optom. 90, 5–19 (2007).
[Crossref]

Dorronsoro, C.

S. Kling, N. Bekesi, C. Dorronsoro, D. Pascual, and S. Marcos, “Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation,” PloS ONE 9, e104904 (2014).
[Crossref]

Elsheikh, A.

A. A. Joda, M. M. S. Shervin, D. Kook, and A. Elsheikh, “Development and validation of a correction equation for Corvis tonometry,” Comput. Methods Biomech. Biomed. Eng. 19, 1–11 (2016).
[Crossref]

Esteve-Taboada, J. J.

M. A. Aloy, J. E. Adsuara, P. Cerda-Duran, M. Obergaulinger, J. J. Esteve-Taboada, T. Ferrer-Blasco, and R. Monte’s-Mico, “Estimation of the mechanical properties of the eye through the study of its vibrational modes,” PloS ONE 12, e0183892 (2017).
[Crossref]

Farshidi, R.

R. Farshidi, “Intraocular pressure measurements using vibration based non-contact tonometry,” M.Sc. thesis (University of Calgary, 2009).

Ferrer-Blasco, T.

M. A. Aloy, J. E. Adsuara, P. Cerda-Duran, M. Obergaulinger, J. J. Esteve-Taboada, T. Ferrer-Blasco, and R. Monte’s-Mico, “Estimation of the mechanical properties of the eye through the study of its vibrational modes,” PloS ONE 12, e0183892 (2017).
[Crossref]

Fuhrmann, M.

A. von Freyberg, M. Sorg, M. Fuhrmann, C. F. Kreiner, J. Pfannkuche, T. Klink, D. Hensler, F. Grehn, and G. Goch, “Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement,” J. Glaucoma 18, 316–320 (2009).
[Crossref]

Goch, G.

A. von Freyberg, M. Sorg, M. Fuhrmann, C. F. Kreiner, J. Pfannkuche, T. Klink, D. Hensler, F. Grehn, and G. Goch, “Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement,” J. Glaucoma 18, 316–320 (2009).
[Crossref]

Grehn, F.

A. von Freyberg, M. Sorg, M. Fuhrmann, C. F. Kreiner, J. Pfannkuche, T. Klink, D. Hensler, F. Grehn, and G. Goch, “Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement,” J. Glaucoma 18, 316–320 (2009).
[Crossref]

Han, Z.

Z. Han, C. Tao, D. Zhou, Y. Sun, C. Zhou, Q. Ren, and C. J. Roberts, “Air puff induced corneal vibrations: theoretical simulations and clinical observations,” J. Refract. Surg. 30, 208–213 (2014).
[Crossref]

Hensler, D.

A. von Freyberg, M. Sorg, M. Fuhrmann, C. F. Kreiner, J. Pfannkuche, T. Klink, D. Hensler, F. Grehn, and G. Goch, “Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement,” J. Glaucoma 18, 316–320 (2009).
[Crossref]

Joda, A. A.

A. A. Joda, M. M. S. Shervin, D. Kook, and A. Elsheikh, “Development and validation of a correction equation for Corvis tonometry,” Comput. Methods Biomech. Biomed. Eng. 19, 1–11 (2016).
[Crossref]

Jozwik, A.

A. Boszczyk, H. Kasprzak, and A. Jozwik, “Eye retraction and rotation during Corvis ST ‘air puff’ intraocular pressure measurement and its quantitative analysis,” Ophthal. Physiol. Opt. 37, 253–262(2017).
[Crossref]

Kasprzak, H.

A. Boszczyk, H. Kasprzak, and A. Jozwik, “Eye retraction and rotation during Corvis ST ‘air puff’ intraocular pressure measurement and its quantitative analysis,” Ophthal. Physiol. Opt. 37, 253–262(2017).
[Crossref]

H. Kasprzak and A. Boszczyk, “Numerical analysis of corneal curvature dynamics based on Corvis tonometer images,” J. Biophoton. 9, 436–444 (2016).
[Crossref]

Kling, S.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11, 20140920 (2014).
[Crossref]

S. Kling, N. Bekesi, C. Dorronsoro, D. Pascual, and S. Marcos, “Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation,” PloS ONE 9, e104904 (2014).
[Crossref]

Klink, T.

A. von Freyberg, M. Sorg, M. Fuhrmann, C. F. Kreiner, J. Pfannkuche, T. Klink, D. Hensler, F. Grehn, and G. Goch, “Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement,” J. Glaucoma 18, 316–320 (2009).
[Crossref]

Kook, D.

A. A. Joda, M. M. S. Shervin, D. Kook, and A. Elsheikh, “Development and validation of a correction equation for Corvis tonometry,” Comput. Methods Biomech. Biomed. Eng. 19, 1–11 (2016).
[Crossref]

Koprowski, R.

R. Koprowski and S. Wilczyński, “Corneal vibrations during intraocular pressure measurement with an air-puff method,” J. Healthcare Eng. 2018, 5705749 (2018).
[Crossref]

R. Koprowski, R. Ambrósio, and S. Reisdorf, “Scheimpflug camera in the quantitative assessment of reproducibility of high-speed corneal deformation during intraocular pressure measurement,” J. Biophoton. 8, 968–978 (2015).
[Crossref]

R. Koprowski and R. Ambrósio, “Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus,” Comput. Biol. Med. 66, 170–178 (2015).
[Crossref]

R. Koprowski, “Automatic method of analysis and measurement of additional parameters of corneal deformation in the Corvis tonometer,” Biomed. Eng. Online 13, 150 (2014).
[Crossref]

Krakau, C. E. T.

C. E. T. Krakau, “A vibration tonometer,” Ophthal. Res. 1, 129–139 (1970).
[Crossref]

Kreiner, C. F.

A. von Freyberg, M. Sorg, M. Fuhrmann, C. F. Kreiner, J. Pfannkuche, T. Klink, D. Hensler, F. Grehn, and G. Goch, “Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement,” J. Glaucoma 18, 316–320 (2009).
[Crossref]

London, G.

G. London, R. Schmieder, and C. Calvo, “Applanation tonometry,” J. Hypertens. 22, S275 (2004).
[Crossref]

Luce, D. A.

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31, 156–162 (2005).
[Crossref]

D. A. Luce, “Method and apparatus for determining true intraocular pressure,” U.S. patent7,909,765 B2 (March22, 2011).

Marcos, S.

S. Kling, N. Bekesi, C. Dorronsoro, D. Pascual, and S. Marcos, “Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation,” PloS ONE 9, e104904 (2014).
[Crossref]

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11, 20140920 (2014).
[Crossref]

Monte’s-Mico, R.

M. A. Aloy, J. E. Adsuara, P. Cerda-Duran, M. Obergaulinger, J. J. Esteve-Taboada, T. Ferrer-Blasco, and R. Monte’s-Mico, “Estimation of the mechanical properties of the eye through the study of its vibrational modes,” PloS ONE 12, e0183892 (2017).
[Crossref]

Obergaulinger, M.

M. A. Aloy, J. E. Adsuara, P. Cerda-Duran, M. Obergaulinger, J. J. Esteve-Taboada, T. Ferrer-Blasco, and R. Monte’s-Mico, “Estimation of the mechanical properties of the eye through the study of its vibrational modes,” PloS ONE 12, e0183892 (2017).
[Crossref]

Pascual, D.

S. Kling, N. Bekesi, C. Dorronsoro, D. Pascual, and S. Marcos, “Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation,” PloS ONE 9, e104904 (2014).
[Crossref]

Pfannkuche, J.

A. von Freyberg, M. Sorg, M. Fuhrmann, C. F. Kreiner, J. Pfannkuche, T. Klink, D. Hensler, F. Grehn, and G. Goch, “Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement,” J. Glaucoma 18, 316–320 (2009).
[Crossref]

Read, S. A.

S. A. Read, M. J. Collins, and L. G. Carney, “A review of astigmatism and its possible genesis,” Clin. Exp. Optom. 90, 5–19 (2007).
[Crossref]

Reisdorf, S.

R. Koprowski, R. Ambrósio, and S. Reisdorf, “Scheimpflug camera in the quantitative assessment of reproducibility of high-speed corneal deformation during intraocular pressure measurement,” J. Biophoton. 8, 968–978 (2015).
[Crossref]

Ren, Q.

Z. Han, C. Tao, D. Zhou, Y. Sun, C. Zhou, Q. Ren, and C. J. Roberts, “Air puff induced corneal vibrations: theoretical simulations and clinical observations,” J. Refract. Surg. 30, 208–213 (2014).
[Crossref]

Roberts, C. J.

Z. Han, C. Tao, D. Zhou, Y. Sun, C. Zhou, Q. Ren, and C. J. Roberts, “Air puff induced corneal vibrations: theoretical simulations and clinical observations,” J. Refract. Surg. 30, 208–213 (2014).
[Crossref]

Scarcelli, G.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11, 20140920 (2014).
[Crossref]

Schmieder, R.

G. London, R. Schmieder, and C. Calvo, “Applanation tonometry,” J. Hypertens. 22, S275 (2004).
[Crossref]

Shervin, M. M. S.

A. A. Joda, M. M. S. Shervin, D. Kook, and A. Elsheikh, “Development and validation of a correction equation for Corvis tonometry,” Comput. Methods Biomech. Biomed. Eng. 19, 1–11 (2016).
[Crossref]

Sorg, M.

A. von Freyberg, M. Sorg, M. Fuhrmann, C. F. Kreiner, J. Pfannkuche, T. Klink, D. Hensler, F. Grehn, and G. Goch, “Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement,” J. Glaucoma 18, 316–320 (2009).
[Crossref]

Sun, Y.

Z. Han, C. Tao, D. Zhou, Y. Sun, C. Zhou, Q. Ren, and C. J. Roberts, “Air puff induced corneal vibrations: theoretical simulations and clinical observations,” J. Refract. Surg. 30, 208–213 (2014).
[Crossref]

Tao, C.

Z. Han, C. Tao, D. Zhou, Y. Sun, C. Zhou, Q. Ren, and C. J. Roberts, “Air puff induced corneal vibrations: theoretical simulations and clinical observations,” J. Refract. Surg. 30, 208–213 (2014).
[Crossref]

von Freyberg, A.

A. von Freyberg, M. Sorg, M. Fuhrmann, C. F. Kreiner, J. Pfannkuche, T. Klink, D. Hensler, F. Grehn, and G. Goch, “Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement,” J. Glaucoma 18, 316–320 (2009).
[Crossref]

Wilczynski, S.

R. Koprowski and S. Wilczyński, “Corneal vibrations during intraocular pressure measurement with an air-puff method,” J. Healthcare Eng. 2018, 5705749 (2018).
[Crossref]

Yun, S.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11, 20140920 (2014).
[Crossref]

Zhou, C.

Z. Han, C. Tao, D. Zhou, Y. Sun, C. Zhou, Q. Ren, and C. J. Roberts, “Air puff induced corneal vibrations: theoretical simulations and clinical observations,” J. Refract. Surg. 30, 208–213 (2014).
[Crossref]

Zhou, D.

Z. Han, C. Tao, D. Zhou, Y. Sun, C. Zhou, Q. Ren, and C. J. Roberts, “Air puff induced corneal vibrations: theoretical simulations and clinical observations,” J. Refract. Surg. 30, 208–213 (2014).
[Crossref]

Biomed. Eng. Online (1)

R. Koprowski, “Automatic method of analysis and measurement of additional parameters of corneal deformation in the Corvis tonometer,” Biomed. Eng. Online 13, 150 (2014).
[Crossref]

BMJ (2)

J. M. Bland and D. G. Altman, “Calculating correlation coefficients with repeated observations: part 2—correlation between subjects,” BMJ 310, 633 (1995).
[Crossref]

J. M. Bland and D. G. Altman, “Statistics notes: measurement error,” BMJ 313, 744 (1996).
[Crossref]

Clin. Exp. Optom. (1)

S. A. Read, M. J. Collins, and L. G. Carney, “A review of astigmatism and its possible genesis,” Clin. Exp. Optom. 90, 5–19 (2007).
[Crossref]

Comput. Biol. Med. (1)

R. Koprowski and R. Ambrósio, “Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus,” Comput. Biol. Med. 66, 170–178 (2015).
[Crossref]

Comput. Methods Biomech. Biomed. Eng. (1)

A. A. Joda, M. M. S. Shervin, D. Kook, and A. Elsheikh, “Development and validation of a correction equation for Corvis tonometry,” Comput. Methods Biomech. Biomed. Eng. 19, 1–11 (2016).
[Crossref]

J. Biophoton. (2)

R. Koprowski, R. Ambrósio, and S. Reisdorf, “Scheimpflug camera in the quantitative assessment of reproducibility of high-speed corneal deformation during intraocular pressure measurement,” J. Biophoton. 8, 968–978 (2015).
[Crossref]

H. Kasprzak and A. Boszczyk, “Numerical analysis of corneal curvature dynamics based on Corvis tonometer images,” J. Biophoton. 9, 436–444 (2016).
[Crossref]

J. Cataract Refract. Surg. (1)

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31, 156–162 (2005).
[Crossref]

J. Glaucoma (1)

A. von Freyberg, M. Sorg, M. Fuhrmann, C. F. Kreiner, J. Pfannkuche, T. Klink, D. Hensler, F. Grehn, and G. Goch, “Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement,” J. Glaucoma 18, 316–320 (2009).
[Crossref]

J. Healthcare Eng. (1)

R. Koprowski and S. Wilczyński, “Corneal vibrations during intraocular pressure measurement with an air-puff method,” J. Healthcare Eng. 2018, 5705749 (2018).
[Crossref]

J. Hypertens. (1)

G. London, R. Schmieder, and C. Calvo, “Applanation tonometry,” J. Hypertens. 22, S275 (2004).
[Crossref]

J. R. Soc. Interface (1)

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11, 20140920 (2014).
[Crossref]

J. Refract. Surg. (1)

Z. Han, C. Tao, D. Zhou, Y. Sun, C. Zhou, Q. Ren, and C. J. Roberts, “Air puff induced corneal vibrations: theoretical simulations and clinical observations,” J. Refract. Surg. 30, 208–213 (2014).
[Crossref]

Ophthal. Physiol. Opt. (1)

A. Boszczyk, H. Kasprzak, and A. Jozwik, “Eye retraction and rotation during Corvis ST ‘air puff’ intraocular pressure measurement and its quantitative analysis,” Ophthal. Physiol. Opt. 37, 253–262(2017).
[Crossref]

Ophthal. Res. (1)

C. E. T. Krakau, “A vibration tonometer,” Ophthal. Res. 1, 129–139 (1970).
[Crossref]

PloS ONE (2)

S. Kling, N. Bekesi, C. Dorronsoro, D. Pascual, and S. Marcos, “Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation,” PloS ONE 9, e104904 (2014).
[Crossref]

M. A. Aloy, J. E. Adsuara, P. Cerda-Duran, M. Obergaulinger, J. J. Esteve-Taboada, T. Ferrer-Blasco, and R. Monte’s-Mico, “Estimation of the mechanical properties of the eye through the study of its vibrational modes,” PloS ONE 12, e0183892 (2017).
[Crossref]

Other (3)

R. Farshidi, “Intraocular pressure measurements using vibration based non-contact tonometry,” M.Sc. thesis (University of Calgary, 2009).

http://www.oculus.de .

D. A. Luce, “Method and apparatus for determining true intraocular pressure,” U.S. patent7,909,765 B2 (March22, 2011).

Supplementary Material (2)

NameDescription
» Visualization 1       Horizontal cross-section of the cornea deformed with an air pulse during measurement with Corvis ST tonometer.
» Visualization 2       3D plot of dependencies between corneal thickness CCT, unadjusted CVS-IOP and vibration frequency CM50. Subject means and one standard deviation above and below the means of data for individual subjects are represented by dots and whiskers, respectively.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Symmetric and asymmetric corneal vibrations; white arrows: direction of vibration at a given moment; gray, unfilled arrows: vibration direction in the next moment.
Fig. 2.
Fig. 2. Corneal indentation map (a) and smoothed corneal indentation map (b), whose difference presents the corneal vibration map (c). Dotted vertical lines in (c) indicate the positions of the corneal points located 1.92 mm left and right of the apex.
Fig. 3.
Fig. 3. (a) Exemplary vibrations of the corneal profile points located 1.92 mm (120 pixels) on the left and right sides of the apex; (b) mutual vibrations of these two points, determined as a difference of their vibrations; (c) frequency distribution of mutual vibrations presented in (b).
Fig. 4.
Fig. 4. Mutual vibrations of the corneal profile points located 1.92 mm (120 pixels) on the left and right sides of the apex (a), and its frequency distribution with characteristic vibration frequencies marked (b). MAF, maximum amplitude frequency; CM50, frequency related to the “mass” center of the shaded area.
Fig. 5.
Fig. 5. Indentations of the corneal apex and two corneal points located 1.92 mm to the right and to the left from the apex presented for two exemplary measurements.
Fig. 6.
Fig. 6. Correlation plots for CM50 versus CVS-IOP (a), bIOP (b), and CVS-IOP divided by CCT (c). Subject means and one standard deviation above and below the means of data for individual subjects are represented by dots and whiskers, respectively. r , Pearson correlation coefficient for subject means.
Fig. 7.
Fig. 7. 3D plot of dependencies between corneal thickness CCT, unadjusted CVS-IOP, and vibration frequency CM50 (see Visualization 2). Subject means and one standard deviation above and below the means of data for individual subjects are represented by dots and whiskers, respectively.

Tables (2)

Tables Icon

Table 1. Summary Statistics of Frequencies MAF and CM50 a

Tables Icon

Table 2. Pearson Correlation Coefficients r for Parameters Given by Corvis ST Software and Average Vibration Frequencies MAF and CM50 a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V i ( k ) = I C i ( k ) I C g i ( k ) .
CM 50 = n ( Y n ω n ) n ω n ,
CM 50 = 0.5632 CCT [ Hz μm ] + 22 CVS - IOP [ Hz mmHg ] + 492.1 [ Hz ] ,

Metrics