Abstract

Optical resonators are widely used in modern photonics. Their spectral response and temporal dynamics are fundamentally driven by their natural resonances, the so-called quasinormal modes (QNMs), with complex frequencies. For optical resonators made of dispersive materials, the QNM computation requires solving a nonlinear eigenvalue problem. This raises a difficulty that is only scarcely documented in the literature. We review our recent efforts for implementing efficient and accurate QNM solvers for computing and normalizing the QNMs of micro- and nanoresonators made of highly dispersive materials. We benchmark several methods for three geometries, a two-dimensional plasmonic crystal, a two-dimensional metal grating, and a three-dimensional nanopatch antenna on a metal substrate, with the perspective to elaborate standards for the computation of resonance modes.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonuniqueness of the quasinormal mode expansion of electromagnetic Lorentz dispersive materials

A. Gras, P. Lalanne, and M. Duruflé
J. Opt. Soc. Am. A 37(7) 1219-1228 (2020)

Modeling electromagnetic resonators using quasinormal modes

Philip Trøst Kristensen, Kathrin Herrmann, Francesco Intravaia, and Kurt Busch
Adv. Opt. Photon. 12(3) 612-708 (2020)

Nonlocal quasinormal modes for arbitrarily shaped three-dimensional plasmonic resonators

Mohsen Kamandar Dezfouli, Christos Tserkezis, N. Asger Mortensen, and Stephen Hughes
Optica 4(12) 1503-1509 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription