Abstract

This paper presents a comparative study of multi-look approaches for de-noising phase maps from digital holographic interferometry. A database of 160 simulated phase fringe patterns with eight different phase fringe patterns with fringe diversity was computed. For each fringe pattern, 20 realistic noise realizations are generated in order to simulate a multi-look process with 20 inputs. A set of 22 de-noising algorithms was selected and processed for each simulation. Three approaches for multi-look processing are evaluated. Quantitative appraisal is obtained using two metrics. The results show good agreement for algorithm rankings obtained with both metrics. One singular and highly practical result of the study is that a multi-look approach with average looks before noise processing performs better than averaging computed with all de-noised looks. The results also demonstrate that the two-dimensional windowed Fourier transform filtering exhibits the best performance in all cases and that the block-matching 3D (BM3D) algorithm is second in the ranking.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative appraisal for noise reduction in digital holographic phase imaging

Silvio Montresor and Pascal Picart
Opt. Express 24(13) 14322-14343 (2016)

Reference-free metric for quantitative noise appraisal in holographic phase measurements

Silvio Montrésor, Pascal Picart, and Mayssa Karray
J. Opt. Soc. Am. A 35(1) A53-A60 (2018)

Error analysis for noise reduction in 3D deformation measurement with digital color holography

Silvio Montrésor, Pascal Picart, Oleksandr Sakharuk, and Leonid Muravsky
J. Opt. Soc. Am. B 34(5) B9-B15 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription