Abstract

A prelocation image stitching method is proposed for the scan imaging system using Risley prisms. By confining the feature-based stitching procedure to several prelocated overlap areas in multiple subregion images, the proposed method reduces the computational complexity of feature extraction and image registration. Experiment results and analysis have validated the feasibility and robustness of the overlap prelocation algorithm, which can enhance the image stitching efficiency by 21.89% at least and by 39.38% at most. In addition, the composite image obtained from the prelocation stitching procedure can achieve a large field of view while maintaining high resolution.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced scanning agility using a double pair of Risley prisms

Gilles Roy, Xiaoying Cao, Robert Bernier, and Simon Roy
Appl. Opt. 54(34) 10213-10226 (2015)

Laser coarse-fine coupling tracking by cascaded rotation Risley-prism pairs

Anhu Li, Wansong Sun, Xingsheng Liu, and Wei Gong
Appl. Opt. 57(14) 3873-3880 (2018)

Forward and inverse solutions for three-element Risley prism beam scanners

Anhu Li, Xingsheng Liu, and Wansong Sun
Opt. Express 25(7) 7677-7688 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Schneider, E. Schwalbe, and H.-G. Maas, “Validation of geometric models for fisheye lenses,” ISPRS J. Photogramm. Remote Sens. 64, 259–266 (2009).
    [Crossref]
  2. F. Huang, X. Shen, Q. Wang, B. Zhou, W. Hu, H. Shen, and L. Li, “Correction method for fisheye image based on the virtual small-field camera,” Opt. Lett. 38, 1392–1394 (2013).
    [Crossref]
  3. D. Kim, J. Park, and J. Paik, “Extended fisheye lens model for practical geometric correction and image enhancement,” Opt. Lett. 39, 6261–6264 (2014).
    [Crossref]
  4. J. Gluckman and S. K. Nayar, “Planar catadioptric stereo: geometry and calibration,” Int. J. Comput. Vis. 44, 65–79 (2001).
    [Crossref]
  5. Y. Yagi and M. Yachida, “Real-time omnidirectional image sensors,” Int. J. Comput. Vis. 58, 173–207 (2004).
    [Crossref]
  6. W. Li and Y. F. Li, “Single-camera panoramic stereo imaging system with a fisheye lens and a convex mirror,” Opt. Express 19, 5855–5867 (2011).
    [Crossref]
  7. W. Song, X. Liu, P. Lu, Y. Huang, D. Weng, Y. Zheng, Y. Liu, and Y. Wang, “Design and assessment of a 360° panoramic and high-performance capture system with two tiled catadioptric imaging channels,” Appl. Opt. 57, 3429–3437 (2018).
    [Crossref]
  8. V. Leboucher and G. Aubry, “High-resolution panoramic images with megapixel MWIR FPA,” Proc. SPIE 9070, 90700F (2014).
    [Crossref]
  9. J. Robichaud, A. Akerstrom, S. Frey, D. Crompton, P. Cucchiaro, G. Deveau, M. Peters, S. Mason, and C. Ullathorne, “Reaction bonded silicon carbide gimbaled pointing mirror,” Proc. SPIE 6666, 66660O (2007).
    [Crossref]
  10. V.-F. Duma, K.-S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50, 5735–5749 (2011).
    [Crossref]
  11. L. Liu, N. Chen, and C. J. R. Sheppard, “Double-reflection polygon mirror for high-speed optical coherence microscopy,” Opt. Lett. 32, 3528–3530 (2007).
    [Crossref]
  12. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
    [Crossref]
  13. F. A. Rosell, “Prism scanner,” J. Opt. Soc. Am. 50, 521–526 (1960).
    [Crossref]
  14. A. Li, W. Sun, W. Yi, and Q. Zuo, “Investigation of beam steering performances in rotation Risley-prism scanner,” Opt. Express 24, 12840–12850 (2016).
    [Crossref]
  15. G. F. Marshall, “Risley prism scan patterns,” Proc. SPIE 3787, 74–86 (1999).
    [Crossref]
  16. V.-F. Duma and A. Schitea, “Laser scanners with rotational Risley prisms: exact scan patterns,” Proc. Rom. Acad. Ser. A 19, 53–60 (2018).
  17. G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning, 2nd ed. (CRC Press, 2011).
  18. V. Lavigne, P. C. Chevrette, B. Ricard, and A. Zaccarin, “Step-stare technique for airborne high-resolution infrared imaging,” Proc. SPIE 5409, 128–138 (2004).
    [Crossref]
  19. Q. Hao, Z. Wang, J. Cao, and F. Zhang, “A hybrid bionic image sensor achieving FOV extension and foveated imaging,” Sensors 18, 1042 (2018).
    [Crossref]
  20. S. T. Y. Suen, E. Y. Lam, and K. K. Y. Wong, “Photographic stitching with optimized object and color matching based on image derivatives,” Opt. Express 15, 7689–7696 (2007).
    [Crossref]
  21. P. Picart and P. Tankam, “Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography,” Appl. Opt. 52, A240–A253 (2013).
    [Crossref]
  22. V.-F. Duma, P. Tankam, J. Huang, J. Won, and J. P. Rolland, “Optimization of galvanometer scanning for optical coherence tomography,” Appl. Opt. 54, 5495–5507 (2015).
    [Crossref]
  23. M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74, 59–73 (2007).
    [Crossref]
  24. A. Li, X. Gao, W. Sun, W. Yi, Y. Bian, H. Liu, and L. Liu, “Inverse solutions for a Risley prism scanner with iterative refinement by a forward solution,” Appl. Opt. 54, 9981–9989 (2015).
    [Crossref]
  25. Y. Li, “Closed form analytical inverse solutions for Risley-prism-based beam steering systems in different configurations,” Appl. Opt. 50, 4302–4309 (2011).
    [Crossref]
  26. A. Li, Q. Zuo, W. Sun, and W. Yi, “Beam distortion of rotation double prisms with an arbitrary incident angle,” Appl. Opt. 55, 5164–5171 (2016).
    [Crossref]
  27. J. S. Dai, “Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections,” Mech. Mach. Theory 92, 144–152 (2015).
    [Crossref]
  28. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60, 91–110 (2004).
    [Crossref]
  29. R. Szeliski, “Video mosaics for virtual environments,” IEEE Comput. Graph. Appl. 16, 22–30 (1996).
    [Crossref]
  30. C. Florea, J. Sanghera, and I. Aggarwal, “Broadband beam steering using chalcogenide-based Risley prisms,” Opt. Eng. 50, 033001 (2011).
    [Crossref]

2018 (3)

V.-F. Duma and A. Schitea, “Laser scanners with rotational Risley prisms: exact scan patterns,” Proc. Rom. Acad. Ser. A 19, 53–60 (2018).

Q. Hao, Z. Wang, J. Cao, and F. Zhang, “A hybrid bionic image sensor achieving FOV extension and foveated imaging,” Sensors 18, 1042 (2018).
[Crossref]

W. Song, X. Liu, P. Lu, Y. Huang, D. Weng, Y. Zheng, Y. Liu, and Y. Wang, “Design and assessment of a 360° panoramic and high-performance capture system with two tiled catadioptric imaging channels,” Appl. Opt. 57, 3429–3437 (2018).
[Crossref]

2016 (2)

2015 (3)

2014 (3)

2013 (2)

2011 (4)

2009 (1)

D. Schneider, E. Schwalbe, and H.-G. Maas, “Validation of geometric models for fisheye lenses,” ISPRS J. Photogramm. Remote Sens. 64, 259–266 (2009).
[Crossref]

2007 (4)

S. T. Y. Suen, E. Y. Lam, and K. K. Y. Wong, “Photographic stitching with optimized object and color matching based on image derivatives,” Opt. Express 15, 7689–7696 (2007).
[Crossref]

L. Liu, N. Chen, and C. J. R. Sheppard, “Double-reflection polygon mirror for high-speed optical coherence microscopy,” Opt. Lett. 32, 3528–3530 (2007).
[Crossref]

J. Robichaud, A. Akerstrom, S. Frey, D. Crompton, P. Cucchiaro, G. Deveau, M. Peters, S. Mason, and C. Ullathorne, “Reaction bonded silicon carbide gimbaled pointing mirror,” Proc. SPIE 6666, 66660O (2007).
[Crossref]

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74, 59–73 (2007).
[Crossref]

2004 (3)

V. Lavigne, P. C. Chevrette, B. Ricard, and A. Zaccarin, “Step-stare technique for airborne high-resolution infrared imaging,” Proc. SPIE 5409, 128–138 (2004).
[Crossref]

Y. Yagi and M. Yachida, “Real-time omnidirectional image sensors,” Int. J. Comput. Vis. 58, 173–207 (2004).
[Crossref]

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60, 91–110 (2004).
[Crossref]

2001 (1)

J. Gluckman and S. K. Nayar, “Planar catadioptric stereo: geometry and calibration,” Int. J. Comput. Vis. 44, 65–79 (2001).
[Crossref]

1999 (1)

G. F. Marshall, “Risley prism scan patterns,” Proc. SPIE 3787, 74–86 (1999).
[Crossref]

1996 (1)

R. Szeliski, “Video mosaics for virtual environments,” IEEE Comput. Graph. Appl. 16, 22–30 (1996).
[Crossref]

1960 (1)

Aggarwal, I.

C. Florea, J. Sanghera, and I. Aggarwal, “Broadband beam steering using chalcogenide-based Risley prisms,” Opt. Eng. 50, 033001 (2011).
[Crossref]

Akerstrom, A.

J. Robichaud, A. Akerstrom, S. Frey, D. Crompton, P. Cucchiaro, G. Deveau, M. Peters, S. Mason, and C. Ullathorne, “Reaction bonded silicon carbide gimbaled pointing mirror,” Proc. SPIE 6666, 66660O (2007).
[Crossref]

Aubry, G.

V. Leboucher and G. Aubry, “High-resolution panoramic images with megapixel MWIR FPA,” Proc. SPIE 9070, 90700F (2014).
[Crossref]

Bian, Y.

Brown, M.

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74, 59–73 (2007).
[Crossref]

Cable, A. E.

Cao, J.

Q. Hao, Z. Wang, J. Cao, and F. Zhang, “A hybrid bionic image sensor achieving FOV extension and foveated imaging,” Sensors 18, 1042 (2018).
[Crossref]

Chen, N.

Chevrette, P. C.

V. Lavigne, P. C. Chevrette, B. Ricard, and A. Zaccarin, “Step-stare technique for airborne high-resolution infrared imaging,” Proc. SPIE 5409, 128–138 (2004).
[Crossref]

Choi, W.

Crompton, D.

J. Robichaud, A. Akerstrom, S. Frey, D. Crompton, P. Cucchiaro, G. Deveau, M. Peters, S. Mason, and C. Ullathorne, “Reaction bonded silicon carbide gimbaled pointing mirror,” Proc. SPIE 6666, 66660O (2007).
[Crossref]

Cucchiaro, P.

J. Robichaud, A. Akerstrom, S. Frey, D. Crompton, P. Cucchiaro, G. Deveau, M. Peters, S. Mason, and C. Ullathorne, “Reaction bonded silicon carbide gimbaled pointing mirror,” Proc. SPIE 6666, 66660O (2007).
[Crossref]

Dai, J. S.

J. S. Dai, “Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections,” Mech. Mach. Theory 92, 144–152 (2015).
[Crossref]

Deveau, G.

J. Robichaud, A. Akerstrom, S. Frey, D. Crompton, P. Cucchiaro, G. Deveau, M. Peters, S. Mason, and C. Ullathorne, “Reaction bonded silicon carbide gimbaled pointing mirror,” Proc. SPIE 6666, 66660O (2007).
[Crossref]

Duker, J. S.

Duma, V.-F.

Florea, C.

C. Florea, J. Sanghera, and I. Aggarwal, “Broadband beam steering using chalcogenide-based Risley prisms,” Opt. Eng. 50, 033001 (2011).
[Crossref]

Frey, S.

J. Robichaud, A. Akerstrom, S. Frey, D. Crompton, P. Cucchiaro, G. Deveau, M. Peters, S. Mason, and C. Ullathorne, “Reaction bonded silicon carbide gimbaled pointing mirror,” Proc. SPIE 6666, 66660O (2007).
[Crossref]

Fujimoto, J. G.

Gao, X.

Gluckman, J.

J. Gluckman and S. K. Nayar, “Planar catadioptric stereo: geometry and calibration,” Int. J. Comput. Vis. 44, 65–79 (2001).
[Crossref]

Hao, Q.

Q. Hao, Z. Wang, J. Cao, and F. Zhang, “A hybrid bionic image sensor achieving FOV extension and foveated imaging,” Sensors 18, 1042 (2018).
[Crossref]

Hornegger, J.

Hu, W.

Huang, F.

Huang, J.

Huang, Y.

Jayaraman, V.

Kim, D.

Kraus, M. F.

Lam, E. Y.

Lavigne, V.

V. Lavigne, P. C. Chevrette, B. Ricard, and A. Zaccarin, “Step-stare technique for airborne high-resolution infrared imaging,” Proc. SPIE 5409, 128–138 (2004).
[Crossref]

Leboucher, V.

V. Leboucher and G. Aubry, “High-resolution panoramic images with megapixel MWIR FPA,” Proc. SPIE 9070, 90700F (2014).
[Crossref]

Lee, K.-S.

Li, A.

Li, L.

Li, W.

Li, Y.

Li, Y. F.

Liu, H.

Liu, J. J.

Liu, L.

Liu, X.

Liu, Y.

Lowe, D. G.

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74, 59–73 (2007).
[Crossref]

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60, 91–110 (2004).
[Crossref]

Lu, C. D.

Lu, P.

Maas, H.-G.

D. Schneider, E. Schwalbe, and H.-G. Maas, “Validation of geometric models for fisheye lenses,” ISPRS J. Photogramm. Remote Sens. 64, 259–266 (2009).
[Crossref]

Marshall, G. F.

G. F. Marshall, “Risley prism scan patterns,” Proc. SPIE 3787, 74–86 (1999).
[Crossref]

G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning, 2nd ed. (CRC Press, 2011).

Mason, S.

J. Robichaud, A. Akerstrom, S. Frey, D. Crompton, P. Cucchiaro, G. Deveau, M. Peters, S. Mason, and C. Ullathorne, “Reaction bonded silicon carbide gimbaled pointing mirror,” Proc. SPIE 6666, 66660O (2007).
[Crossref]

Meemon, P.

Nayar, S. K.

J. Gluckman and S. K. Nayar, “Planar catadioptric stereo: geometry and calibration,” Int. J. Comput. Vis. 44, 65–79 (2001).
[Crossref]

Paik, J.

Park, J.

Peters, M.

J. Robichaud, A. Akerstrom, S. Frey, D. Crompton, P. Cucchiaro, G. Deveau, M. Peters, S. Mason, and C. Ullathorne, “Reaction bonded silicon carbide gimbaled pointing mirror,” Proc. SPIE 6666, 66660O (2007).
[Crossref]

Picart, P.

Potsaid, B.

Ricard, B.

V. Lavigne, P. C. Chevrette, B. Ricard, and A. Zaccarin, “Step-stare technique for airborne high-resolution infrared imaging,” Proc. SPIE 5409, 128–138 (2004).
[Crossref]

Robichaud, J.

J. Robichaud, A. Akerstrom, S. Frey, D. Crompton, P. Cucchiaro, G. Deveau, M. Peters, S. Mason, and C. Ullathorne, “Reaction bonded silicon carbide gimbaled pointing mirror,” Proc. SPIE 6666, 66660O (2007).
[Crossref]

Rolland, J. P.

Rosell, F. A.

Sanghera, J.

C. Florea, J. Sanghera, and I. Aggarwal, “Broadband beam steering using chalcogenide-based Risley prisms,” Opt. Eng. 50, 033001 (2011).
[Crossref]

Schitea, A.

V.-F. Duma and A. Schitea, “Laser scanners with rotational Risley prisms: exact scan patterns,” Proc. Rom. Acad. Ser. A 19, 53–60 (2018).

Schneider, D.

D. Schneider, E. Schwalbe, and H.-G. Maas, “Validation of geometric models for fisheye lenses,” ISPRS J. Photogramm. Remote Sens. 64, 259–266 (2009).
[Crossref]

Schwalbe, E.

D. Schneider, E. Schwalbe, and H.-G. Maas, “Validation of geometric models for fisheye lenses,” ISPRS J. Photogramm. Remote Sens. 64, 259–266 (2009).
[Crossref]

Shen, H.

Shen, X.

Sheppard, C. J. R.

Song, W.

Stutz, G. E.

G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning, 2nd ed. (CRC Press, 2011).

Suen, S. T. Y.

Sun, W.

Szeliski, R.

R. Szeliski, “Video mosaics for virtual environments,” IEEE Comput. Graph. Appl. 16, 22–30 (1996).
[Crossref]

Tankam, P.

Ullathorne, C.

J. Robichaud, A. Akerstrom, S. Frey, D. Crompton, P. Cucchiaro, G. Deveau, M. Peters, S. Mason, and C. Ullathorne, “Reaction bonded silicon carbide gimbaled pointing mirror,” Proc. SPIE 6666, 66660O (2007).
[Crossref]

Wang, Q.

Wang, Y.

Wang, Z.

Q. Hao, Z. Wang, J. Cao, and F. Zhang, “A hybrid bionic image sensor achieving FOV extension and foveated imaging,” Sensors 18, 1042 (2018).
[Crossref]

Weng, D.

Won, J.

Wong, K. K. Y.

Yachida, M.

Y. Yagi and M. Yachida, “Real-time omnidirectional image sensors,” Int. J. Comput. Vis. 58, 173–207 (2004).
[Crossref]

Yagi, Y.

Y. Yagi and M. Yachida, “Real-time omnidirectional image sensors,” Int. J. Comput. Vis. 58, 173–207 (2004).
[Crossref]

Yi, W.

Zaccarin, A.

V. Lavigne, P. C. Chevrette, B. Ricard, and A. Zaccarin, “Step-stare technique for airborne high-resolution infrared imaging,” Proc. SPIE 5409, 128–138 (2004).
[Crossref]

Zhang, F.

Q. Hao, Z. Wang, J. Cao, and F. Zhang, “A hybrid bionic image sensor achieving FOV extension and foveated imaging,” Sensors 18, 1042 (2018).
[Crossref]

Zheng, Y.

Zhou, B.

Zuo, Q.

Appl. Opt. (7)

Biomed. Opt. Express (1)

IEEE Comput. Graph. Appl. (1)

R. Szeliski, “Video mosaics for virtual environments,” IEEE Comput. Graph. Appl. 16, 22–30 (1996).
[Crossref]

Int. J. Comput. Vis. (4)

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74, 59–73 (2007).
[Crossref]

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60, 91–110 (2004).
[Crossref]

J. Gluckman and S. K. Nayar, “Planar catadioptric stereo: geometry and calibration,” Int. J. Comput. Vis. 44, 65–79 (2001).
[Crossref]

Y. Yagi and M. Yachida, “Real-time omnidirectional image sensors,” Int. J. Comput. Vis. 58, 173–207 (2004).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (1)

D. Schneider, E. Schwalbe, and H.-G. Maas, “Validation of geometric models for fisheye lenses,” ISPRS J. Photogramm. Remote Sens. 64, 259–266 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

Mech. Mach. Theory (1)

J. S. Dai, “Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections,” Mech. Mach. Theory 92, 144–152 (2015).
[Crossref]

Opt. Eng. (1)

C. Florea, J. Sanghera, and I. Aggarwal, “Broadband beam steering using chalcogenide-based Risley prisms,” Opt. Eng. 50, 033001 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Proc. Rom. Acad. Ser. A (1)

V.-F. Duma and A. Schitea, “Laser scanners with rotational Risley prisms: exact scan patterns,” Proc. Rom. Acad. Ser. A 19, 53–60 (2018).

Proc. SPIE (4)

V. Lavigne, P. C. Chevrette, B. Ricard, and A. Zaccarin, “Step-stare technique for airborne high-resolution infrared imaging,” Proc. SPIE 5409, 128–138 (2004).
[Crossref]

G. F. Marshall, “Risley prism scan patterns,” Proc. SPIE 3787, 74–86 (1999).
[Crossref]

V. Leboucher and G. Aubry, “High-resolution panoramic images with megapixel MWIR FPA,” Proc. SPIE 9070, 90700F (2014).
[Crossref]

J. Robichaud, A. Akerstrom, S. Frey, D. Crompton, P. Cucchiaro, G. Deveau, M. Peters, S. Mason, and C. Ullathorne, “Reaction bonded silicon carbide gimbaled pointing mirror,” Proc. SPIE 6666, 66660O (2007).
[Crossref]

Sensors (1)

Q. Hao, Z. Wang, J. Cao, and F. Zhang, “A hybrid bionic image sensor achieving FOV extension and foveated imaging,” Sensors 18, 1042 (2018).
[Crossref]

Other (1)

G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning, 2nd ed. (CRC Press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram illustrating the prelocation image stitching method, where (a) is the image acquisition model with Risley prisms, (b) shows the acquired subregion images from four viewpoints, (c) shows the prelocation of all overlap areas, (d) indicates other steps during the image stitching procedure, and (e) is a composite view stitched from the subregion images.
Fig. 2.
Fig. 2. Experimental setup composed of a CCD camera, an optical lens, an optical filter, a Risley prism scanner, and its motion controller.
Fig. 3.
Fig. 3. Subregion images acquired by Risley-prism scan imaging system, where (a)–(i) are sequentially gathered under the conditions in Table 1.
Fig. 4.
Fig. 4. Comparison of (a) distorted image and (b) corrected image.
Fig. 5.
Fig. 5. Prelocated overlap areas in image 1 and image 2.
Fig. 6.
Fig. 6. Composite image created by use of prelocation stitching method, where (a) shows the stitched result of all subregion images, and (b) and (c) present the enlarged views of M and N, respectively.
Fig. 7.
Fig. 7. Effects of the number of images on (a) the number of SIFT features and (b) the operation time for image stitching procedure.

Tables (1)

Tables Icon

Table 1. Camera Boresight Deflections and Consequent Prism Orientations for Subregion Imagesa

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ρ=arccos(dZdX2+dY2+dZ2),
ϕ={arctan(dYdX),dX>0arctan(dYdX)+π,dX0,
θ1=ϕ[arctan(c1sinαsinθΔb1c1sinαcosθΔ)+π],
θ2=θ1θΔ,
θΔ=arccos(b2cosαc2b1sinα),
b1=sinα(1n2sin2αncosα),
b2=nsin2α+cosα1n2sin2α,
c1=n2+cos2ρ1b2cosα,
c2=n2c1212c1.
R(ρ,ϕ)=A(ϕ)+[IA(ϕ)]·cosρ+B(ϕ)·sinρ,
A(ϕ)=[sin2ϕsinϕ·cosϕ0sinϕ·cosϕcos2ϕ0000],
B(ϕ)=[00cosϕ00sinϕcosϕsinϕ0].
u=[xyf]Tx2+y2+f2,
v=R(ρ,ϕ)u=R(ρ,ϕ)·[xyf]Tx2+y2+f2.
[x2y2f]=λ[R(ρ1,ϕ1)]1R(ρ2,ϕ2)[x2y2f].
I(x,y)={I1(x,y),(x,y)(I1I1I2)ω1I1(x,y)+ω2I2(x,y),(x,y)(I1I2)I2(x,y),(x,y)(I2I1I2).