Abstract

The symmetry axis is the midline that divides a pattern into congruent halves, which is physically nonexistent but evokes tilt aftereffect (TAE). To investigate the cortical correspondence of the symmetry axis, we examined the invariance of symmetry-induced TAE with regard to low-level visual features and the spatial transfer of TAE over visual fields. When the adaptation pattern was rotated and changed sequentially with the orientation of the symmetry axis unchanged, the measured TAE decreased only slightly (18%) compared to stationary patterns. This effect persisted when the adaptation and test patterns were presented in different visual fields. These results indicate that the cortical representation of symmetry is generated independently of low-level features and involves higher-level visual areas.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Truncation of the flash-lag effect by a fixed spatial landmark

Jacob D. Paschall and Mark E. Mazurek
J. Opt. Soc. Am. A 31(9) 1993-2001 (2014)

Dynamic coding of temporal luminance variation

Árni Kristjánsson
J. Opt. Soc. Am. A 29(6) 1180-1187 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Bertamini, J. Silvanto, A. M. Norcia, A. D. J. Makin, and J. Wageman, “The neural basis of visual symmetry and its role in mid- and high-level visual processing,” Ann. N.Y. Acad. Sci. 1426, 111–126 (2018).
    [Crossref]
  2. B. Machilsen, M. Pauwels, and J. Wagemans, “The role of vertical mirror symmetry in visual shape detection,” J. Vis. 9(12), 11 (2009).
    [Crossref]
  3. J. Wageman, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R. von der Heydt, “A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization,” Psych. Bul. 138, 1172–1217 (2012).
    [Crossref]
  4. M. Hasuike, S. Ueno, D. Minowa, Y. Yamane, H. Tamura, and K. Sakai, “Figure-ground segregation by a population of V4 cells,” in 22nd International Conference on Neural Information Processing, Lecture Notes in Computer Science (2015), Vol. 9490, pp. 617–622.
  5. R. van der Zwan, E. Leo, W. Joung, C. Latimer, and P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
    [Crossref]
  6. E. Gheorghiu, J. Bell, and F. A. A. Kingdom, “Visual adaptation to symmetry,” J. Vis. 14(10), 63 (2014).
    [Crossref]
  7. C.-C. Hung, E. T. Carlson, and C. E. Connor, “Medial axis shape coding in macaque inferotemporal cortex,” Neuron 74, 1099–1113 (2012).
    [Crossref]
  8. Y. Sasaki, W. Vanduffel, T. Knutsen, C. Tyler, and R. Tootell, “Symmetry activates extrastriate visual cortex in human and nonhuman primates,” Proc. Natl. Acad. Sci. USA 102, 3159–3163 (2005).
    [Crossref]
  9. B. D. Keefe, A. D. Gouws, A. A. Sheldon, R. J. W. Vernon, S. J. D. Lawrence, D. J. McKeefry, A. R. Wade, and A. B. Morand, “Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes,” HBM 39, 3813–3826 (2018).
    [Crossref]
  10. A. M. Norcia, T. R. Candy, M. W. Pettet, V. Y. Vildavski, and C. W. Tyler, “Temporal dynamics of the human response to symmetry,” J. Vis. 2(2):1, 132–139 (2002).
    [Crossref]
  11. D. Wright, A. D. J. Makin, and M. Bertamini, “Electrophysiological responses to symmetry presented in the left or in the right visual hemifield,” Cortex 86, 93–108 (2017).
    [Crossref]
  12. S. Bona, Z. Cattaneo, and J. Silvanto, “The causal role of the occipital face area (OFA) and lateral occipital (LO) cortex in symmetry perception,” J. Neurosci. 35, 731–738 (2015).
    [Crossref]
  13. C.-C. Chen, K.-L. C. Kao, and C. W. Tyler, “Face configuration processing in the human brain: the role of symmetry,” Cerebral Cortex 17, 1423–1432 (2007).
    [Crossref]
  14. W. Joung, R. van der Zwan, and C. R. Latimer, “Tilt aftereffects generated by bilaterally symmetrical patterns,” Spatial Vis. 13, 107–128 (2000).
    [Crossref]
  15. W. Joung and C. R. Latimer, “Tilt aftereffects generated by symmetrical dot patterns with two or four axes of symmetry,” Spatial Vis. 16, 155–182 (2003).
    [Crossref]
  16. A. Peters and K. S. Rockland, eds., Primary Visual Cortex in Primates, Cerebral Cortex (Springer, 1994), Vol. 10.
  17. R. J. Sharman and E. Gheorghiu, “The role of motion and number of element locations in mirror symmetry perception,” Sci. Rep. 7, 45679 (2017).
    [Crossref]
  18. T. Knapen, M. Rolfs, M. Wexler, and P. Cavanagh, “The reference frame of the tilt aftereffect,” J. Vis. 10(1), 8 (2010).
    [Crossref]
  19. R. B. Morant and H. H. Mikaelian, “Inter-field tilt after-effects,” Perceptual Motor Skills 10, 95–98 (1960).
    [Crossref]
  20. R. B. Morant and J. R. Harris, “Two different after-effect of exposure to visual tilts,” Am. J. Psychol. 78, 218–226 (1965).
    [Crossref]
  21. D. Muir and R. Over, “Tilt aftereffects in central and peripheral vision,” J. Exp. Psychol. 85, 165–170 (1970).
    [Crossref]
  22. E. Gheorghiu, J. Bell, and F. A. A. Kingdom, “Line orientation adaptation: local or global?” PLoS ONE 8, e73307 (2013).
    [Crossref]
  23. S.-R. Afraz and P. Cavanagh, “Retinotopy of the face aftereffect,” Vision Res. 48, 42–54 (2008).
    [Crossref]
  24. K. Matsumiya, “Retinotopy of facial expression adaptation,” Multisens. Res. 27, 127–137 (2014).
    [Crossref]
  25. E. H. Cohen and Q. Zaidi, “Symmetry in context: salience of mirror symmetry in natural patterns,” J. Vis. 13(6), 22 (2013).
    [Crossref]
  26. K. Sakai, S. Matsuoka, K. Kurematsu, and Y. Hatori, “Perceptual representation and effectiveness of local figure-ground cues in natural contours,” Front. Psychol. 6, 1685 (2015).
    [Crossref]
  27. N. A. Thomas and L. J. Elias, “Upper and lower visual field differences in perceptual asymmetries,” Brain Res. 1387, 108–115 (2011).
    [Crossref]
  28. J. Larsson, M. S. Landy, and D. J. Seeger, “Orientation-selective adaptation to first- and second-order patterns in human visual cortex,” J. Neurophysiol. 95, 862–881 (2006).
    [Crossref]

2018 (2)

M. Bertamini, J. Silvanto, A. M. Norcia, A. D. J. Makin, and J. Wageman, “The neural basis of visual symmetry and its role in mid- and high-level visual processing,” Ann. N.Y. Acad. Sci. 1426, 111–126 (2018).
[Crossref]

B. D. Keefe, A. D. Gouws, A. A. Sheldon, R. J. W. Vernon, S. J. D. Lawrence, D. J. McKeefry, A. R. Wade, and A. B. Morand, “Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes,” HBM 39, 3813–3826 (2018).
[Crossref]

2017 (2)

D. Wright, A. D. J. Makin, and M. Bertamini, “Electrophysiological responses to symmetry presented in the left or in the right visual hemifield,” Cortex 86, 93–108 (2017).
[Crossref]

R. J. Sharman and E. Gheorghiu, “The role of motion and number of element locations in mirror symmetry perception,” Sci. Rep. 7, 45679 (2017).
[Crossref]

2015 (2)

S. Bona, Z. Cattaneo, and J. Silvanto, “The causal role of the occipital face area (OFA) and lateral occipital (LO) cortex in symmetry perception,” J. Neurosci. 35, 731–738 (2015).
[Crossref]

K. Sakai, S. Matsuoka, K. Kurematsu, and Y. Hatori, “Perceptual representation and effectiveness of local figure-ground cues in natural contours,” Front. Psychol. 6, 1685 (2015).
[Crossref]

2014 (2)

K. Matsumiya, “Retinotopy of facial expression adaptation,” Multisens. Res. 27, 127–137 (2014).
[Crossref]

E. Gheorghiu, J. Bell, and F. A. A. Kingdom, “Visual adaptation to symmetry,” J. Vis. 14(10), 63 (2014).
[Crossref]

2013 (2)

E. H. Cohen and Q. Zaidi, “Symmetry in context: salience of mirror symmetry in natural patterns,” J. Vis. 13(6), 22 (2013).
[Crossref]

E. Gheorghiu, J. Bell, and F. A. A. Kingdom, “Line orientation adaptation: local or global?” PLoS ONE 8, e73307 (2013).
[Crossref]

2012 (2)

C.-C. Hung, E. T. Carlson, and C. E. Connor, “Medial axis shape coding in macaque inferotemporal cortex,” Neuron 74, 1099–1113 (2012).
[Crossref]

J. Wageman, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R. von der Heydt, “A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization,” Psych. Bul. 138, 1172–1217 (2012).
[Crossref]

2011 (1)

N. A. Thomas and L. J. Elias, “Upper and lower visual field differences in perceptual asymmetries,” Brain Res. 1387, 108–115 (2011).
[Crossref]

2010 (1)

T. Knapen, M. Rolfs, M. Wexler, and P. Cavanagh, “The reference frame of the tilt aftereffect,” J. Vis. 10(1), 8 (2010).
[Crossref]

2009 (1)

B. Machilsen, M. Pauwels, and J. Wagemans, “The role of vertical mirror symmetry in visual shape detection,” J. Vis. 9(12), 11 (2009).
[Crossref]

2008 (1)

S.-R. Afraz and P. Cavanagh, “Retinotopy of the face aftereffect,” Vision Res. 48, 42–54 (2008).
[Crossref]

2007 (1)

C.-C. Chen, K.-L. C. Kao, and C. W. Tyler, “Face configuration processing in the human brain: the role of symmetry,” Cerebral Cortex 17, 1423–1432 (2007).
[Crossref]

2006 (1)

J. Larsson, M. S. Landy, and D. J. Seeger, “Orientation-selective adaptation to first- and second-order patterns in human visual cortex,” J. Neurophysiol. 95, 862–881 (2006).
[Crossref]

2005 (1)

Y. Sasaki, W. Vanduffel, T. Knutsen, C. Tyler, and R. Tootell, “Symmetry activates extrastriate visual cortex in human and nonhuman primates,” Proc. Natl. Acad. Sci. USA 102, 3159–3163 (2005).
[Crossref]

2003 (1)

W. Joung and C. R. Latimer, “Tilt aftereffects generated by symmetrical dot patterns with two or four axes of symmetry,” Spatial Vis. 16, 155–182 (2003).
[Crossref]

2002 (1)

A. M. Norcia, T. R. Candy, M. W. Pettet, V. Y. Vildavski, and C. W. Tyler, “Temporal dynamics of the human response to symmetry,” J. Vis. 2(2):1, 132–139 (2002).
[Crossref]

2000 (1)

W. Joung, R. van der Zwan, and C. R. Latimer, “Tilt aftereffects generated by bilaterally symmetrical patterns,” Spatial Vis. 13, 107–128 (2000).
[Crossref]

1998 (1)

R. van der Zwan, E. Leo, W. Joung, C. Latimer, and P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[Crossref]

1970 (1)

D. Muir and R. Over, “Tilt aftereffects in central and peripheral vision,” J. Exp. Psychol. 85, 165–170 (1970).
[Crossref]

1965 (1)

R. B. Morant and J. R. Harris, “Two different after-effect of exposure to visual tilts,” Am. J. Psychol. 78, 218–226 (1965).
[Crossref]

1960 (1)

R. B. Morant and H. H. Mikaelian, “Inter-field tilt after-effects,” Perceptual Motor Skills 10, 95–98 (1960).
[Crossref]

Afraz, S.-R.

S.-R. Afraz and P. Cavanagh, “Retinotopy of the face aftereffect,” Vision Res. 48, 42–54 (2008).
[Crossref]

Bell, J.

E. Gheorghiu, J. Bell, and F. A. A. Kingdom, “Visual adaptation to symmetry,” J. Vis. 14(10), 63 (2014).
[Crossref]

E. Gheorghiu, J. Bell, and F. A. A. Kingdom, “Line orientation adaptation: local or global?” PLoS ONE 8, e73307 (2013).
[Crossref]

Bertamini, M.

M. Bertamini, J. Silvanto, A. M. Norcia, A. D. J. Makin, and J. Wageman, “The neural basis of visual symmetry and its role in mid- and high-level visual processing,” Ann. N.Y. Acad. Sci. 1426, 111–126 (2018).
[Crossref]

D. Wright, A. D. J. Makin, and M. Bertamini, “Electrophysiological responses to symmetry presented in the left or in the right visual hemifield,” Cortex 86, 93–108 (2017).
[Crossref]

Bona, S.

S. Bona, Z. Cattaneo, and J. Silvanto, “The causal role of the occipital face area (OFA) and lateral occipital (LO) cortex in symmetry perception,” J. Neurosci. 35, 731–738 (2015).
[Crossref]

Candy, T. R.

A. M. Norcia, T. R. Candy, M. W. Pettet, V. Y. Vildavski, and C. W. Tyler, “Temporal dynamics of the human response to symmetry,” J. Vis. 2(2):1, 132–139 (2002).
[Crossref]

Carlson, E. T.

C.-C. Hung, E. T. Carlson, and C. E. Connor, “Medial axis shape coding in macaque inferotemporal cortex,” Neuron 74, 1099–1113 (2012).
[Crossref]

Cattaneo, Z.

S. Bona, Z. Cattaneo, and J. Silvanto, “The causal role of the occipital face area (OFA) and lateral occipital (LO) cortex in symmetry perception,” J. Neurosci. 35, 731–738 (2015).
[Crossref]

Cavanagh, P.

T. Knapen, M. Rolfs, M. Wexler, and P. Cavanagh, “The reference frame of the tilt aftereffect,” J. Vis. 10(1), 8 (2010).
[Crossref]

S.-R. Afraz and P. Cavanagh, “Retinotopy of the face aftereffect,” Vision Res. 48, 42–54 (2008).
[Crossref]

Chen, C.-C.

C.-C. Chen, K.-L. C. Kao, and C. W. Tyler, “Face configuration processing in the human brain: the role of symmetry,” Cerebral Cortex 17, 1423–1432 (2007).
[Crossref]

Cohen, E. H.

E. H. Cohen and Q. Zaidi, “Symmetry in context: salience of mirror symmetry in natural patterns,” J. Vis. 13(6), 22 (2013).
[Crossref]

Connor, C. E.

C.-C. Hung, E. T. Carlson, and C. E. Connor, “Medial axis shape coding in macaque inferotemporal cortex,” Neuron 74, 1099–1113 (2012).
[Crossref]

Elder, J. H.

J. Wageman, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R. von der Heydt, “A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization,” Psych. Bul. 138, 1172–1217 (2012).
[Crossref]

Elias, L. J.

N. A. Thomas and L. J. Elias, “Upper and lower visual field differences in perceptual asymmetries,” Brain Res. 1387, 108–115 (2011).
[Crossref]

Gheorghiu, E.

R. J. Sharman and E. Gheorghiu, “The role of motion and number of element locations in mirror symmetry perception,” Sci. Rep. 7, 45679 (2017).
[Crossref]

E. Gheorghiu, J. Bell, and F. A. A. Kingdom, “Visual adaptation to symmetry,” J. Vis. 14(10), 63 (2014).
[Crossref]

E. Gheorghiu, J. Bell, and F. A. A. Kingdom, “Line orientation adaptation: local or global?” PLoS ONE 8, e73307 (2013).
[Crossref]

Gouws, A. D.

B. D. Keefe, A. D. Gouws, A. A. Sheldon, R. J. W. Vernon, S. J. D. Lawrence, D. J. McKeefry, A. R. Wade, and A. B. Morand, “Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes,” HBM 39, 3813–3826 (2018).
[Crossref]

Harris, J. R.

R. B. Morant and J. R. Harris, “Two different after-effect of exposure to visual tilts,” Am. J. Psychol. 78, 218–226 (1965).
[Crossref]

Hasuike, M.

M. Hasuike, S. Ueno, D. Minowa, Y. Yamane, H. Tamura, and K. Sakai, “Figure-ground segregation by a population of V4 cells,” in 22nd International Conference on Neural Information Processing, Lecture Notes in Computer Science (2015), Vol. 9490, pp. 617–622.

Hatori, Y.

K. Sakai, S. Matsuoka, K. Kurematsu, and Y. Hatori, “Perceptual representation and effectiveness of local figure-ground cues in natural contours,” Front. Psychol. 6, 1685 (2015).
[Crossref]

Hung, C.-C.

C.-C. Hung, E. T. Carlson, and C. E. Connor, “Medial axis shape coding in macaque inferotemporal cortex,” Neuron 74, 1099–1113 (2012).
[Crossref]

Joung, W.

W. Joung and C. R. Latimer, “Tilt aftereffects generated by symmetrical dot patterns with two or four axes of symmetry,” Spatial Vis. 16, 155–182 (2003).
[Crossref]

W. Joung, R. van der Zwan, and C. R. Latimer, “Tilt aftereffects generated by bilaterally symmetrical patterns,” Spatial Vis. 13, 107–128 (2000).
[Crossref]

R. van der Zwan, E. Leo, W. Joung, C. Latimer, and P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[Crossref]

Kao, K.-L. C.

C.-C. Chen, K.-L. C. Kao, and C. W. Tyler, “Face configuration processing in the human brain: the role of symmetry,” Cerebral Cortex 17, 1423–1432 (2007).
[Crossref]

Keefe, B. D.

B. D. Keefe, A. D. Gouws, A. A. Sheldon, R. J. W. Vernon, S. J. D. Lawrence, D. J. McKeefry, A. R. Wade, and A. B. Morand, “Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes,” HBM 39, 3813–3826 (2018).
[Crossref]

Kingdom, F. A. A.

E. Gheorghiu, J. Bell, and F. A. A. Kingdom, “Visual adaptation to symmetry,” J. Vis. 14(10), 63 (2014).
[Crossref]

E. Gheorghiu, J. Bell, and F. A. A. Kingdom, “Line orientation adaptation: local or global?” PLoS ONE 8, e73307 (2013).
[Crossref]

Knapen, T.

T. Knapen, M. Rolfs, M. Wexler, and P. Cavanagh, “The reference frame of the tilt aftereffect,” J. Vis. 10(1), 8 (2010).
[Crossref]

Knutsen, T.

Y. Sasaki, W. Vanduffel, T. Knutsen, C. Tyler, and R. Tootell, “Symmetry activates extrastriate visual cortex in human and nonhuman primates,” Proc. Natl. Acad. Sci. USA 102, 3159–3163 (2005).
[Crossref]

Kubovy, M.

J. Wageman, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R. von der Heydt, “A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization,” Psych. Bul. 138, 1172–1217 (2012).
[Crossref]

Kurematsu, K.

K. Sakai, S. Matsuoka, K. Kurematsu, and Y. Hatori, “Perceptual representation and effectiveness of local figure-ground cues in natural contours,” Front. Psychol. 6, 1685 (2015).
[Crossref]

Landy, M. S.

J. Larsson, M. S. Landy, and D. J. Seeger, “Orientation-selective adaptation to first- and second-order patterns in human visual cortex,” J. Neurophysiol. 95, 862–881 (2006).
[Crossref]

Larsson, J.

J. Larsson, M. S. Landy, and D. J. Seeger, “Orientation-selective adaptation to first- and second-order patterns in human visual cortex,” J. Neurophysiol. 95, 862–881 (2006).
[Crossref]

Latimer, C.

R. van der Zwan, E. Leo, W. Joung, C. Latimer, and P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[Crossref]

Latimer, C. R.

W. Joung and C. R. Latimer, “Tilt aftereffects generated by symmetrical dot patterns with two or four axes of symmetry,” Spatial Vis. 16, 155–182 (2003).
[Crossref]

W. Joung, R. van der Zwan, and C. R. Latimer, “Tilt aftereffects generated by bilaterally symmetrical patterns,” Spatial Vis. 13, 107–128 (2000).
[Crossref]

Lawrence, S. J. D.

B. D. Keefe, A. D. Gouws, A. A. Sheldon, R. J. W. Vernon, S. J. D. Lawrence, D. J. McKeefry, A. R. Wade, and A. B. Morand, “Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes,” HBM 39, 3813–3826 (2018).
[Crossref]

Leo, E.

R. van der Zwan, E. Leo, W. Joung, C. Latimer, and P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[Crossref]

Machilsen, B.

B. Machilsen, M. Pauwels, and J. Wagemans, “The role of vertical mirror symmetry in visual shape detection,” J. Vis. 9(12), 11 (2009).
[Crossref]

Makin, A. D. J.

M. Bertamini, J. Silvanto, A. M. Norcia, A. D. J. Makin, and J. Wageman, “The neural basis of visual symmetry and its role in mid- and high-level visual processing,” Ann. N.Y. Acad. Sci. 1426, 111–126 (2018).
[Crossref]

D. Wright, A. D. J. Makin, and M. Bertamini, “Electrophysiological responses to symmetry presented in the left or in the right visual hemifield,” Cortex 86, 93–108 (2017).
[Crossref]

Matsumiya, K.

K. Matsumiya, “Retinotopy of facial expression adaptation,” Multisens. Res. 27, 127–137 (2014).
[Crossref]

Matsuoka, S.

K. Sakai, S. Matsuoka, K. Kurematsu, and Y. Hatori, “Perceptual representation and effectiveness of local figure-ground cues in natural contours,” Front. Psychol. 6, 1685 (2015).
[Crossref]

McKeefry, D. J.

B. D. Keefe, A. D. Gouws, A. A. Sheldon, R. J. W. Vernon, S. J. D. Lawrence, D. J. McKeefry, A. R. Wade, and A. B. Morand, “Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes,” HBM 39, 3813–3826 (2018).
[Crossref]

Mikaelian, H. H.

R. B. Morant and H. H. Mikaelian, “Inter-field tilt after-effects,” Perceptual Motor Skills 10, 95–98 (1960).
[Crossref]

Minowa, D.

M. Hasuike, S. Ueno, D. Minowa, Y. Yamane, H. Tamura, and K. Sakai, “Figure-ground segregation by a population of V4 cells,” in 22nd International Conference on Neural Information Processing, Lecture Notes in Computer Science (2015), Vol. 9490, pp. 617–622.

Morand, A. B.

B. D. Keefe, A. D. Gouws, A. A. Sheldon, R. J. W. Vernon, S. J. D. Lawrence, D. J. McKeefry, A. R. Wade, and A. B. Morand, “Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes,” HBM 39, 3813–3826 (2018).
[Crossref]

Morant, R. B.

R. B. Morant and J. R. Harris, “Two different after-effect of exposure to visual tilts,” Am. J. Psychol. 78, 218–226 (1965).
[Crossref]

R. B. Morant and H. H. Mikaelian, “Inter-field tilt after-effects,” Perceptual Motor Skills 10, 95–98 (1960).
[Crossref]

Muir, D.

D. Muir and R. Over, “Tilt aftereffects in central and peripheral vision,” J. Exp. Psychol. 85, 165–170 (1970).
[Crossref]

Norcia, A. M.

M. Bertamini, J. Silvanto, A. M. Norcia, A. D. J. Makin, and J. Wageman, “The neural basis of visual symmetry and its role in mid- and high-level visual processing,” Ann. N.Y. Acad. Sci. 1426, 111–126 (2018).
[Crossref]

A. M. Norcia, T. R. Candy, M. W. Pettet, V. Y. Vildavski, and C. W. Tyler, “Temporal dynamics of the human response to symmetry,” J. Vis. 2(2):1, 132–139 (2002).
[Crossref]

Over, R.

D. Muir and R. Over, “Tilt aftereffects in central and peripheral vision,” J. Exp. Psychol. 85, 165–170 (1970).
[Crossref]

Palmer, S. E.

J. Wageman, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R. von der Heydt, “A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization,” Psych. Bul. 138, 1172–1217 (2012).
[Crossref]

Pauwels, M.

B. Machilsen, M. Pauwels, and J. Wagemans, “The role of vertical mirror symmetry in visual shape detection,” J. Vis. 9(12), 11 (2009).
[Crossref]

Peterson, M. A.

J. Wageman, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R. von der Heydt, “A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization,” Psych. Bul. 138, 1172–1217 (2012).
[Crossref]

Pettet, M. W.

A. M. Norcia, T. R. Candy, M. W. Pettet, V. Y. Vildavski, and C. W. Tyler, “Temporal dynamics of the human response to symmetry,” J. Vis. 2(2):1, 132–139 (2002).
[Crossref]

Rolfs, M.

T. Knapen, M. Rolfs, M. Wexler, and P. Cavanagh, “The reference frame of the tilt aftereffect,” J. Vis. 10(1), 8 (2010).
[Crossref]

Sakai, K.

K. Sakai, S. Matsuoka, K. Kurematsu, and Y. Hatori, “Perceptual representation and effectiveness of local figure-ground cues in natural contours,” Front. Psychol. 6, 1685 (2015).
[Crossref]

M. Hasuike, S. Ueno, D. Minowa, Y. Yamane, H. Tamura, and K. Sakai, “Figure-ground segregation by a population of V4 cells,” in 22nd International Conference on Neural Information Processing, Lecture Notes in Computer Science (2015), Vol. 9490, pp. 617–622.

Sasaki, Y.

Y. Sasaki, W. Vanduffel, T. Knutsen, C. Tyler, and R. Tootell, “Symmetry activates extrastriate visual cortex in human and nonhuman primates,” Proc. Natl. Acad. Sci. USA 102, 3159–3163 (2005).
[Crossref]

Seeger, D. J.

J. Larsson, M. S. Landy, and D. J. Seeger, “Orientation-selective adaptation to first- and second-order patterns in human visual cortex,” J. Neurophysiol. 95, 862–881 (2006).
[Crossref]

Sharman, R. J.

R. J. Sharman and E. Gheorghiu, “The role of motion and number of element locations in mirror symmetry perception,” Sci. Rep. 7, 45679 (2017).
[Crossref]

Sheldon, A. A.

B. D. Keefe, A. D. Gouws, A. A. Sheldon, R. J. W. Vernon, S. J. D. Lawrence, D. J. McKeefry, A. R. Wade, and A. B. Morand, “Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes,” HBM 39, 3813–3826 (2018).
[Crossref]

Silvanto, J.

M. Bertamini, J. Silvanto, A. M. Norcia, A. D. J. Makin, and J. Wageman, “The neural basis of visual symmetry and its role in mid- and high-level visual processing,” Ann. N.Y. Acad. Sci. 1426, 111–126 (2018).
[Crossref]

S. Bona, Z. Cattaneo, and J. Silvanto, “The causal role of the occipital face area (OFA) and lateral occipital (LO) cortex in symmetry perception,” J. Neurosci. 35, 731–738 (2015).
[Crossref]

Singh, M.

J. Wageman, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R. von der Heydt, “A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization,” Psych. Bul. 138, 1172–1217 (2012).
[Crossref]

Tamura, H.

M. Hasuike, S. Ueno, D. Minowa, Y. Yamane, H. Tamura, and K. Sakai, “Figure-ground segregation by a population of V4 cells,” in 22nd International Conference on Neural Information Processing, Lecture Notes in Computer Science (2015), Vol. 9490, pp. 617–622.

Thomas, N. A.

N. A. Thomas and L. J. Elias, “Upper and lower visual field differences in perceptual asymmetries,” Brain Res. 1387, 108–115 (2011).
[Crossref]

Tootell, R.

Y. Sasaki, W. Vanduffel, T. Knutsen, C. Tyler, and R. Tootell, “Symmetry activates extrastriate visual cortex in human and nonhuman primates,” Proc. Natl. Acad. Sci. USA 102, 3159–3163 (2005).
[Crossref]

Tyler, C.

Y. Sasaki, W. Vanduffel, T. Knutsen, C. Tyler, and R. Tootell, “Symmetry activates extrastriate visual cortex in human and nonhuman primates,” Proc. Natl. Acad. Sci. USA 102, 3159–3163 (2005).
[Crossref]

Tyler, C. W.

C.-C. Chen, K.-L. C. Kao, and C. W. Tyler, “Face configuration processing in the human brain: the role of symmetry,” Cerebral Cortex 17, 1423–1432 (2007).
[Crossref]

A. M. Norcia, T. R. Candy, M. W. Pettet, V. Y. Vildavski, and C. W. Tyler, “Temporal dynamics of the human response to symmetry,” J. Vis. 2(2):1, 132–139 (2002).
[Crossref]

Ueno, S.

M. Hasuike, S. Ueno, D. Minowa, Y. Yamane, H. Tamura, and K. Sakai, “Figure-ground segregation by a population of V4 cells,” in 22nd International Conference on Neural Information Processing, Lecture Notes in Computer Science (2015), Vol. 9490, pp. 617–622.

van der Zwan, R.

W. Joung, R. van der Zwan, and C. R. Latimer, “Tilt aftereffects generated by bilaterally symmetrical patterns,” Spatial Vis. 13, 107–128 (2000).
[Crossref]

R. van der Zwan, E. Leo, W. Joung, C. Latimer, and P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[Crossref]

Vanduffel, W.

Y. Sasaki, W. Vanduffel, T. Knutsen, C. Tyler, and R. Tootell, “Symmetry activates extrastriate visual cortex in human and nonhuman primates,” Proc. Natl. Acad. Sci. USA 102, 3159–3163 (2005).
[Crossref]

Vernon, R. J. W.

B. D. Keefe, A. D. Gouws, A. A. Sheldon, R. J. W. Vernon, S. J. D. Lawrence, D. J. McKeefry, A. R. Wade, and A. B. Morand, “Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes,” HBM 39, 3813–3826 (2018).
[Crossref]

Vildavski, V. Y.

A. M. Norcia, T. R. Candy, M. W. Pettet, V. Y. Vildavski, and C. W. Tyler, “Temporal dynamics of the human response to symmetry,” J. Vis. 2(2):1, 132–139 (2002).
[Crossref]

von der Heydt, R.

J. Wageman, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R. von der Heydt, “A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization,” Psych. Bul. 138, 1172–1217 (2012).
[Crossref]

Wade, A. R.

B. D. Keefe, A. D. Gouws, A. A. Sheldon, R. J. W. Vernon, S. J. D. Lawrence, D. J. McKeefry, A. R. Wade, and A. B. Morand, “Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes,” HBM 39, 3813–3826 (2018).
[Crossref]

Wageman, J.

M. Bertamini, J. Silvanto, A. M. Norcia, A. D. J. Makin, and J. Wageman, “The neural basis of visual symmetry and its role in mid- and high-level visual processing,” Ann. N.Y. Acad. Sci. 1426, 111–126 (2018).
[Crossref]

J. Wageman, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R. von der Heydt, “A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization,” Psych. Bul. 138, 1172–1217 (2012).
[Crossref]

Wagemans, J.

B. Machilsen, M. Pauwels, and J. Wagemans, “The role of vertical mirror symmetry in visual shape detection,” J. Vis. 9(12), 11 (2009).
[Crossref]

Wenderoth, P.

R. van der Zwan, E. Leo, W. Joung, C. Latimer, and P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[Crossref]

Wexler, M.

T. Knapen, M. Rolfs, M. Wexler, and P. Cavanagh, “The reference frame of the tilt aftereffect,” J. Vis. 10(1), 8 (2010).
[Crossref]

Wright, D.

D. Wright, A. D. J. Makin, and M. Bertamini, “Electrophysiological responses to symmetry presented in the left or in the right visual hemifield,” Cortex 86, 93–108 (2017).
[Crossref]

Yamane, Y.

M. Hasuike, S. Ueno, D. Minowa, Y. Yamane, H. Tamura, and K. Sakai, “Figure-ground segregation by a population of V4 cells,” in 22nd International Conference on Neural Information Processing, Lecture Notes in Computer Science (2015), Vol. 9490, pp. 617–622.

Zaidi, Q.

E. H. Cohen and Q. Zaidi, “Symmetry in context: salience of mirror symmetry in natural patterns,” J. Vis. 13(6), 22 (2013).
[Crossref]

Am. J. Psychol. (1)

R. B. Morant and J. R. Harris, “Two different after-effect of exposure to visual tilts,” Am. J. Psychol. 78, 218–226 (1965).
[Crossref]

Ann. N.Y. Acad. Sci. (1)

M. Bertamini, J. Silvanto, A. M. Norcia, A. D. J. Makin, and J. Wageman, “The neural basis of visual symmetry and its role in mid- and high-level visual processing,” Ann. N.Y. Acad. Sci. 1426, 111–126 (2018).
[Crossref]

Brain Res. (1)

N. A. Thomas and L. J. Elias, “Upper and lower visual field differences in perceptual asymmetries,” Brain Res. 1387, 108–115 (2011).
[Crossref]

Cerebral Cortex (1)

C.-C. Chen, K.-L. C. Kao, and C. W. Tyler, “Face configuration processing in the human brain: the role of symmetry,” Cerebral Cortex 17, 1423–1432 (2007).
[Crossref]

Cortex (1)

D. Wright, A. D. J. Makin, and M. Bertamini, “Electrophysiological responses to symmetry presented in the left or in the right visual hemifield,” Cortex 86, 93–108 (2017).
[Crossref]

Curr. Biol. (1)

R. van der Zwan, E. Leo, W. Joung, C. Latimer, and P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[Crossref]

Front. Psychol. (1)

K. Sakai, S. Matsuoka, K. Kurematsu, and Y. Hatori, “Perceptual representation and effectiveness of local figure-ground cues in natural contours,” Front. Psychol. 6, 1685 (2015).
[Crossref]

HBM (1)

B. D. Keefe, A. D. Gouws, A. A. Sheldon, R. J. W. Vernon, S. J. D. Lawrence, D. J. McKeefry, A. R. Wade, and A. B. Morand, “Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes,” HBM 39, 3813–3826 (2018).
[Crossref]

J. Exp. Psychol. (1)

D. Muir and R. Over, “Tilt aftereffects in central and peripheral vision,” J. Exp. Psychol. 85, 165–170 (1970).
[Crossref]

J. Neurophysiol. (1)

J. Larsson, M. S. Landy, and D. J. Seeger, “Orientation-selective adaptation to first- and second-order patterns in human visual cortex,” J. Neurophysiol. 95, 862–881 (2006).
[Crossref]

J. Neurosci. (1)

S. Bona, Z. Cattaneo, and J. Silvanto, “The causal role of the occipital face area (OFA) and lateral occipital (LO) cortex in symmetry perception,” J. Neurosci. 35, 731–738 (2015).
[Crossref]

J. Vis. (5)

A. M. Norcia, T. R. Candy, M. W. Pettet, V. Y. Vildavski, and C. W. Tyler, “Temporal dynamics of the human response to symmetry,” J. Vis. 2(2):1, 132–139 (2002).
[Crossref]

E. Gheorghiu, J. Bell, and F. A. A. Kingdom, “Visual adaptation to symmetry,” J. Vis. 14(10), 63 (2014).
[Crossref]

B. Machilsen, M. Pauwels, and J. Wagemans, “The role of vertical mirror symmetry in visual shape detection,” J. Vis. 9(12), 11 (2009).
[Crossref]

E. H. Cohen and Q. Zaidi, “Symmetry in context: salience of mirror symmetry in natural patterns,” J. Vis. 13(6), 22 (2013).
[Crossref]

T. Knapen, M. Rolfs, M. Wexler, and P. Cavanagh, “The reference frame of the tilt aftereffect,” J. Vis. 10(1), 8 (2010).
[Crossref]

Multisens. Res. (1)

K. Matsumiya, “Retinotopy of facial expression adaptation,” Multisens. Res. 27, 127–137 (2014).
[Crossref]

Neuron (1)

C.-C. Hung, E. T. Carlson, and C. E. Connor, “Medial axis shape coding in macaque inferotemporal cortex,” Neuron 74, 1099–1113 (2012).
[Crossref]

Perceptual Motor Skills (1)

R. B. Morant and H. H. Mikaelian, “Inter-field tilt after-effects,” Perceptual Motor Skills 10, 95–98 (1960).
[Crossref]

PLoS ONE (1)

E. Gheorghiu, J. Bell, and F. A. A. Kingdom, “Line orientation adaptation: local or global?” PLoS ONE 8, e73307 (2013).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

Y. Sasaki, W. Vanduffel, T. Knutsen, C. Tyler, and R. Tootell, “Symmetry activates extrastriate visual cortex in human and nonhuman primates,” Proc. Natl. Acad. Sci. USA 102, 3159–3163 (2005).
[Crossref]

Psych. Bul. (1)

J. Wageman, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R. von der Heydt, “A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization,” Psych. Bul. 138, 1172–1217 (2012).
[Crossref]

Sci. Rep. (1)

R. J. Sharman and E. Gheorghiu, “The role of motion and number of element locations in mirror symmetry perception,” Sci. Rep. 7, 45679 (2017).
[Crossref]

Spatial Vis. (2)

W. Joung, R. van der Zwan, and C. R. Latimer, “Tilt aftereffects generated by bilaterally symmetrical patterns,” Spatial Vis. 13, 107–128 (2000).
[Crossref]

W. Joung and C. R. Latimer, “Tilt aftereffects generated by symmetrical dot patterns with two or four axes of symmetry,” Spatial Vis. 16, 155–182 (2003).
[Crossref]

Vision Res. (1)

S.-R. Afraz and P. Cavanagh, “Retinotopy of the face aftereffect,” Vision Res. 48, 42–54 (2008).
[Crossref]

Other (2)

A. Peters and K. S. Rockland, eds., Primary Visual Cortex in Primates, Cerebral Cortex (Springer, 1994), Vol. 10.

M. Hasuike, S. Ueno, D. Minowa, Y. Yamane, H. Tamura, and K. Sakai, “Figure-ground segregation by a population of V4 cells,” in 22nd International Conference on Neural Information Processing, Lecture Notes in Computer Science (2015), Vol. 9490, pp. 617–622.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental procedure. (a) Screen transition during a session in Experiment 1. A pair of adaptation stimuli was presented for 60 s, and a pair of test stimuli was then presented for 0.5 s. The participants answered the question “Which stimulus (top or bottom) appeared tilted clockwise?” by pressing a key during the presentation of the blank screen. The trial was repeated 25 times using the staircase method. (b) Adaptation stimuli were rotated at 0.5 rev/s along imaginary circles of radius 1° (circles with dotted lines) whose centers were located 3° above and below the fixation aid (a red square). In this example, the top stimulus was tilted 10 deg (clockwise) and the bottom 10deg (anti-clockwise), and their tilt remained constant during each session. The adaptation stimuli were rotated during the presentation so that their retinotopic positions were continuously changing.
Fig. 2.
Fig. 2. Measured TAE in Experiment 1. (a) Ten types of stimulus patterns. A white digit at the top left of each panel shows stimulus ID. One of the stimuli (ID Nos. between 1 and 5) was selected for the test, and the remaining were used for the adaptation. (b) Measured TAE in Experiment 1. The left panel shows the mean TAE magnitude across the eight participants for the five types of test stimuli. Blue and gray bars show the TAEs for RPA and PLA, respectively. The yellow bar shows the apparent tilt in the blank condition. Asterisks denote a significant difference with respect to the blank (t-test; *: p<0.05; **: p<0.01). Error bars show standard errors. The right panel shows the TAE magnitude of each participant for each test stimulus. Each color represents a participant. (c) The measured TAE for three orientations of the symmetry axis. The mean TAE magnitude among participants for each orientation (gray bars) and the corresponding apparent tilt in the blank condition (yellow bars).
Fig. 3.
Fig. 3. Conditions in Experiment 2. (a) Transfer conditions. Adaptation and test stimuli were presented in different visual fields. The left and right panels show the horizontal and vertical transfer conditions (HT and VT), respectively. Note that we also measured the TAE, with the adaptation stimuli on the right (HT) or top (VT). (b) No-transfer condition. Adaptation and test stimuli are presented at the same locations.
Fig. 4.
Fig. 4. Measured TAEs for the transfer conditions. (a) The mean measured TAEs across participants and test stimuli are plotted for each presentation location of the test stimulus. Blue and green bars show the TAE for the no-transfer and transfer conditions, respectively. The yellow bar shows the apparent tilt for the blank condition. Error bars represent standard error of the mean. (b) Mean TAE magnitude across participants in the transfer condition for each test stimulus. The letters at the top right of the panels indicate the presentation locations of the adaptation and test stimuli (L, left; R, right; T, top; B, bottom). (c) Mean measured TAE magnitude across participants in the no-transfer condition for each test stimulus.
Fig. 5.
Fig. 5. Example response during a test session in Experiment 1. The magnitude of the TAE was defined as the mean of the TAE (red line) over the last 20 trials (a blue line with arrows) using the staircase method. See Section 2.C for details.

Tables (4)

Tables Icon

Table 1. Results of a Two-Way ANOVA for the Blank Condition in Experiment 2

Tables Icon

Table 2. Results of a Two-Way ANOVA for the Transfer Condition in Experiment 2

Tables Icon

Table 3. Results of the Two-Way ANOVA in Appendix A

Tables Icon

Table 4. Results of Tukey’s HSD Test in Appendix A, with a Factor of Orientationa