Abstract

Coherence properties of light sources are indispensable for optical coherence microscopy/tomography as they greatly influence the signal-to-noise ratio, axial resolution, and penetration depth of the system. In the present paper, we report the investigation of longitudinal spatial coherence properties of a pseudothermal light source (PTS) as a function of the laser spot size at the rotating diffuser plate. The laser spot size is varied by translating a microscope objective lens toward or away from the diffuser plate. The longitudinal spatial coherence length, which governs the axial resolution of the coherence microscope, is found to be minimum for the beam spot size of 3.5 mm at the diffuser plate. The axial resolution of the system is found to be equal to an $\sim{13}\,\,{\rm \unicode{x00B5}{\rm m}}$ at 3.5 mm beam spot size. The change in the axial resolution of the system is confirmed by performing the experiments on standard gauge blocks of a height difference of 15 µm by varying the spot size at the diffuser plate. Thus, by appropriately choosing the beam spot size at the diffuser plane, any monochromatic laser light source can be utilized to obtain high axial resolution irrespective of the source’s temporal coherence length. It can provide speckle-free tomographic images of multilayered biological specimens with large penetration depth. In addition, a PTS avoids the use of any chromatic-aberration-corrected optics and dispersion-compensation mechanism unlike conventional setups.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence

Azeem Ahmad, Tanmoy Mahanty, Vishesh Dubey, Ankit Butola, Balpreet Singh Ahluwalia, and Dalip Singh Mehta
Opt. Lett. 44(7) 1817-1820 (2019)

Swept source optical coherence microscopy using a 1310 nm VCSEL light source

Osman O. Ahsen, Yuankai K. Tao, Benjamin M. Potsaid, Yuri Sheikine, James Jiang, Ireneusz Grulkowski, Tsung-Han Tsai, Vijaysekhar Jayaraman, Martin F. Kraus, James L. Connolly, Joachim Hornegger, Alex Cable, and James G. Fujimoto
Opt. Express 21(15) 18021-18033 (2013)

Ultrahigh speed spectral-domain optical coherence microscopy

Hsiang-Chieh Lee, Jonathan J. Liu, Yuri Sheikine, Aaron D. Aguirre, James L. Connolly, and James G. Fujimoto
Biomed. Opt. Express 4(8) 1236-1254 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008).
  2. H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Technol. 2012, 1–26 (2012).
    [Crossref]
  3. A. Ahmad and D. S. Mehta, “Quantitative phase microscopy and tomography with spatially incoherent light,” in Advances in Optics: Reviews (2018), pp. 487–511.
  4. D. S. Mehta, V. Srivastava, S. Nandy, A. Ahmad, and V. Dubey, “Full-field optical coherence tomography and microscopy using spatially incoherent monochromatic light,” in Handbook of Full-Field Optical Coherence Microscopy (Pan Stanford, 2016), pp. 379–414.
  5. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).
  6. A. Ahmad, V. Dubey, V. Singh, A. Butola, T. Joshi, and D. S. Mehta, “Reduction of spatial phase noise in the laser based digital holographic microscopy for the quantitative phase measurement of biological cells,” in European Conference on Biomedical Optics (Optical Society of America, 2017), p. 104140H.
  7. J. Rosen and M. Takeda, “Longitudinal spatial coherence applied for surface profilometry,” Appl. Opt. 39, 4107–4111 (2000).
    [Crossref]
  8. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).
    [Crossref]
  9. A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41, 1554–1557 (2016).
    [Crossref]
  10. M. H. P. Pavel, Z. Duan, and M. Takeda, “Spatial coherence profilometry on tilted surfaces,” Appl. Opt. 48, H40–H47 (2009).
    [Crossref]
  11. A. Ahmad, T. Mahanty, V. Dubey, A. Butola, B. S. Ahluwalia, and D. S. Mehta, “Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence,” Opt. Lett. 44, 1817–1820 (2019).
    [Crossref]
  12. A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106, 093701 (2015).
    [Crossref]
  13. H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S.-W. Kim, and Y.-J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7, 15318 (2017).
    [Crossref]
  14. I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Phys. 524, 787–804 (2012).
    [Crossref]
  15. V. Ryabukho, D. Lyakin, and M. Lobachev, “Longitudinal pure spatial coherence of a light field with wide frequency and angular spectra,” Opt. Lett. 30, 224–226 (2005).
    [Crossref]
  16. V. Ryabukho, D. Lyakin, A. Grebenyuk, and S. Klykov, “Wiener–Khintchin theorem for spatial coherence of optical wave field,” J. Opt. 15, 025405 (2013).
    [Crossref]
  17. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  18. J. W. Goodman, Statistical Optics (Wiley, 2015).
  19. I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
    [Crossref]
  20. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1982).
    [Crossref]
  21. A. Ahmad, V. Dubey, V. R. Singh, J.-C. Tinguely, C. I. Øie, D. L. Wolfson, D. S. Mehta, P. T. C. So, and B. S. Ahluwalia, “Quantitative phase microscopy of red blood cells during planar trapping and propulsion,” Lab Chip 18, 3025–3036 (2018).
    [Crossref]
  22. V. Dubey, V. Singh, A. Ahmad, G. Singh, and D. S. Mehta, “White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water,” Proc. SPIE 9718, 97181F (2016).
    [Crossref]
  23. A. Ahmad, A. Kumar, V. Dubey, A. Butola, B. S. Ahluwalia, and D. S. Mehta, “Characterization of color cross-talk of CCD detectors and its influence in multispectral quantitative phase imaging,” Opt. Express 27, 4572–4589 (2019).
    [Crossref]
  24. I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
    [Crossref]

2019 (2)

2018 (1)

A. Ahmad, V. Dubey, V. R. Singh, J.-C. Tinguely, C. I. Øie, D. L. Wolfson, D. S. Mehta, P. T. C. So, and B. S. Ahluwalia, “Quantitative phase microscopy of red blood cells during planar trapping and propulsion,” Lab Chip 18, 3025–3036 (2018).
[Crossref]

2017 (1)

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S.-W. Kim, and Y.-J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7, 15318 (2017).
[Crossref]

2016 (2)

A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41, 1554–1557 (2016).
[Crossref]

V. Dubey, V. Singh, A. Ahmad, G. Singh, and D. S. Mehta, “White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water,” Proc. SPIE 9718, 97181F (2016).
[Crossref]

2015 (1)

A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106, 093701 (2015).
[Crossref]

2013 (1)

V. Ryabukho, D. Lyakin, A. Grebenyuk, and S. Klykov, “Wiener–Khintchin theorem for spatial coherence of optical wave field,” J. Opt. 15, 025405 (2013).
[Crossref]

2012 (2)

I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Phys. 524, 787–804 (2012).
[Crossref]

H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Technol. 2012, 1–26 (2012).
[Crossref]

2009 (1)

2006 (2)

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
[Crossref]

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
[Crossref]

2005 (1)

2002 (1)

2000 (1)

1982 (1)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1982).
[Crossref]

Abdulhalim, I.

I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Phys. 524, 787–804 (2012).
[Crossref]

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
[Crossref]

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
[Crossref]

Ahluwalia, B. S.

Ahmad, A.

A. Ahmad, A. Kumar, V. Dubey, A. Butola, B. S. Ahluwalia, and D. S. Mehta, “Characterization of color cross-talk of CCD detectors and its influence in multispectral quantitative phase imaging,” Opt. Express 27, 4572–4589 (2019).
[Crossref]

A. Ahmad, T. Mahanty, V. Dubey, A. Butola, B. S. Ahluwalia, and D. S. Mehta, “Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence,” Opt. Lett. 44, 1817–1820 (2019).
[Crossref]

A. Ahmad, V. Dubey, V. R. Singh, J.-C. Tinguely, C. I. Øie, D. L. Wolfson, D. S. Mehta, P. T. C. So, and B. S. Ahluwalia, “Quantitative phase microscopy of red blood cells during planar trapping and propulsion,” Lab Chip 18, 3025–3036 (2018).
[Crossref]

A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41, 1554–1557 (2016).
[Crossref]

V. Dubey, V. Singh, A. Ahmad, G. Singh, and D. S. Mehta, “White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water,” Proc. SPIE 9718, 97181F (2016).
[Crossref]

A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106, 093701 (2015).
[Crossref]

A. Ahmad and D. S. Mehta, “Quantitative phase microscopy and tomography with spatially incoherent light,” in Advances in Optics: Reviews (2018), pp. 487–511.

D. S. Mehta, V. Srivastava, S. Nandy, A. Ahmad, and V. Dubey, “Full-field optical coherence tomography and microscopy using spatially incoherent monochromatic light,” in Handbook of Full-Field Optical Coherence Microscopy (Pan Stanford, 2016), pp. 379–414.

A. Ahmad, V. Dubey, V. Singh, A. Butola, T. Joshi, and D. S. Mehta, “Reduction of spatial phase noise in the laser based digital holographic microscopy for the quantitative phase measurement of biological cells,” in European Conference on Biomedical Optics (Optical Society of America, 2017), p. 104140H.

Boccara, A. C.

Boonruangkan, J.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S.-W. Kim, and Y.-J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7, 15318 (2017).
[Crossref]

Butola, A.

Drexler, W.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008).

Duan, Z.

Dubey, V.

A. Ahmad, T. Mahanty, V. Dubey, A. Butola, B. S. Ahluwalia, and D. S. Mehta, “Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence,” Opt. Lett. 44, 1817–1820 (2019).
[Crossref]

A. Ahmad, A. Kumar, V. Dubey, A. Butola, B. S. Ahluwalia, and D. S. Mehta, “Characterization of color cross-talk of CCD detectors and its influence in multispectral quantitative phase imaging,” Opt. Express 27, 4572–4589 (2019).
[Crossref]

A. Ahmad, V. Dubey, V. R. Singh, J.-C. Tinguely, C. I. Øie, D. L. Wolfson, D. S. Mehta, P. T. C. So, and B. S. Ahluwalia, “Quantitative phase microscopy of red blood cells during planar trapping and propulsion,” Lab Chip 18, 3025–3036 (2018).
[Crossref]

A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41, 1554–1557 (2016).
[Crossref]

V. Dubey, V. Singh, A. Ahmad, G. Singh, and D. S. Mehta, “White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water,” Proc. SPIE 9718, 97181F (2016).
[Crossref]

A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106, 093701 (2015).
[Crossref]

D. S. Mehta, V. Srivastava, S. Nandy, A. Ahmad, and V. Dubey, “Full-field optical coherence tomography and microscopy using spatially incoherent monochromatic light,” in Handbook of Full-Field Optical Coherence Microscopy (Pan Stanford, 2016), pp. 379–414.

A. Ahmad, V. Dubey, V. Singh, A. Butola, T. Joshi, and D. S. Mehta, “Reduction of spatial phase noise in the laser based digital holographic microscopy for the quantitative phase measurement of biological cells,” in European Conference on Biomedical Optics (Optical Society of America, 2017), p. 104140H.

Dubois, A.

Farrokhi, H.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S.-W. Kim, and Y.-J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7, 15318 (2017).
[Crossref]

Fujimoto, J. G.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008).

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 2015).

Grebenyuk, A.

V. Ryabukho, D. Lyakin, A. Grebenyuk, and S. Klykov, “Wiener–Khintchin theorem for spatial coherence of optical wave field,” J. Opt. 15, 025405 (2013).
[Crossref]

Han, S.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S.-W. Kim, and Y.-J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7, 15318 (2017).
[Crossref]

Ina, H.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1982).
[Crossref]

Joshi, T.

A. Ahmad, V. Dubey, V. Singh, A. Butola, T. Joshi, and D. S. Mehta, “Reduction of spatial phase noise in the laser based digital holographic microscopy for the quantitative phase measurement of biological cells,” in European Conference on Biomedical Optics (Optical Society of America, 2017), p. 104140H.

Kim, H.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S.-W. Kim, and Y.-J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7, 15318 (2017).
[Crossref]

Kim, S.-W.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S.-W. Kim, and Y.-J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7, 15318 (2017).
[Crossref]

Kim, Y.-J.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S.-W. Kim, and Y.-J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7, 15318 (2017).
[Crossref]

Klykov, S.

V. Ryabukho, D. Lyakin, A. Grebenyuk, and S. Klykov, “Wiener–Khintchin theorem for spatial coherence of optical wave field,” J. Opt. 15, 025405 (2013).
[Crossref]

Kobayashi, S.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1982).
[Crossref]

Kumar, A.

Lobachev, M.

Lyakin, D.

V. Ryabukho, D. Lyakin, A. Grebenyuk, and S. Klykov, “Wiener–Khintchin theorem for spatial coherence of optical wave field,” J. Opt. 15, 025405 (2013).
[Crossref]

V. Ryabukho, D. Lyakin, and M. Lobachev, “Longitudinal pure spatial coherence of a light field with wide frequency and angular spectra,” Opt. Lett. 30, 224–226 (2005).
[Crossref]

Mahanty, T.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Mehta, D.

A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106, 093701 (2015).
[Crossref]

Mehta, D. S.

A. Ahmad, T. Mahanty, V. Dubey, A. Butola, B. S. Ahluwalia, and D. S. Mehta, “Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence,” Opt. Lett. 44, 1817–1820 (2019).
[Crossref]

A. Ahmad, A. Kumar, V. Dubey, A. Butola, B. S. Ahluwalia, and D. S. Mehta, “Characterization of color cross-talk of CCD detectors and its influence in multispectral quantitative phase imaging,” Opt. Express 27, 4572–4589 (2019).
[Crossref]

A. Ahmad, V. Dubey, V. R. Singh, J.-C. Tinguely, C. I. Øie, D. L. Wolfson, D. S. Mehta, P. T. C. So, and B. S. Ahluwalia, “Quantitative phase microscopy of red blood cells during planar trapping and propulsion,” Lab Chip 18, 3025–3036 (2018).
[Crossref]

A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41, 1554–1557 (2016).
[Crossref]

V. Dubey, V. Singh, A. Ahmad, G. Singh, and D. S. Mehta, “White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water,” Proc. SPIE 9718, 97181F (2016).
[Crossref]

A. Ahmad, V. Dubey, V. Singh, A. Butola, T. Joshi, and D. S. Mehta, “Reduction of spatial phase noise in the laser based digital holographic microscopy for the quantitative phase measurement of biological cells,” in European Conference on Biomedical Optics (Optical Society of America, 2017), p. 104140H.

A. Ahmad and D. S. Mehta, “Quantitative phase microscopy and tomography with spatially incoherent light,” in Advances in Optics: Reviews (2018), pp. 487–511.

D. S. Mehta, V. Srivastava, S. Nandy, A. Ahmad, and V. Dubey, “Full-field optical coherence tomography and microscopy using spatially incoherent monochromatic light,” in Handbook of Full-Field Optical Coherence Microscopy (Pan Stanford, 2016), pp. 379–414.

Nandy, S.

D. S. Mehta, V. Srivastava, S. Nandy, A. Ahmad, and V. Dubey, “Full-field optical coherence tomography and microscopy using spatially incoherent monochromatic light,” in Handbook of Full-Field Optical Coherence Microscopy (Pan Stanford, 2016), pp. 379–414.

Øie, C. I.

A. Ahmad, V. Dubey, V. R. Singh, J.-C. Tinguely, C. I. Øie, D. L. Wolfson, D. S. Mehta, P. T. C. So, and B. S. Ahluwalia, “Quantitative phase microscopy of red blood cells during planar trapping and propulsion,” Lab Chip 18, 3025–3036 (2018).
[Crossref]

Pavel, M. H. P.

Popescu, G.

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).

Rohith, T. M.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S.-W. Kim, and Y.-J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7, 15318 (2017).
[Crossref]

Rosen, J.

Ryabukho, V.

V. Ryabukho, D. Lyakin, A. Grebenyuk, and S. Klykov, “Wiener–Khintchin theorem for spatial coherence of optical wave field,” J. Opt. 15, 025405 (2013).
[Crossref]

V. Ryabukho, D. Lyakin, and M. Lobachev, “Longitudinal pure spatial coherence of a light field with wide frequency and angular spectra,” Opt. Lett. 30, 224–226 (2005).
[Crossref]

Singh, G.

A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41, 1554–1557 (2016).
[Crossref]

V. Dubey, V. Singh, A. Ahmad, G. Singh, and D. S. Mehta, “White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water,” Proc. SPIE 9718, 97181F (2016).
[Crossref]

Singh, V.

V. Dubey, V. Singh, A. Ahmad, G. Singh, and D. S. Mehta, “White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water,” Proc. SPIE 9718, 97181F (2016).
[Crossref]

A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41, 1554–1557 (2016).
[Crossref]

A. Ahmad, V. Dubey, V. Singh, A. Butola, T. Joshi, and D. S. Mehta, “Reduction of spatial phase noise in the laser based digital holographic microscopy for the quantitative phase measurement of biological cells,” in European Conference on Biomedical Optics (Optical Society of America, 2017), p. 104140H.

Singh, V. R.

A. Ahmad, V. Dubey, V. R. Singh, J.-C. Tinguely, C. I. Øie, D. L. Wolfson, D. S. Mehta, P. T. C. So, and B. S. Ahluwalia, “Quantitative phase microscopy of red blood cells during planar trapping and propulsion,” Lab Chip 18, 3025–3036 (2018).
[Crossref]

So, P. T. C.

A. Ahmad, V. Dubey, V. R. Singh, J.-C. Tinguely, C. I. Øie, D. L. Wolfson, D. S. Mehta, P. T. C. So, and B. S. Ahluwalia, “Quantitative phase microscopy of red blood cells during planar trapping and propulsion,” Lab Chip 18, 3025–3036 (2018).
[Crossref]

Srivastava, V.

A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106, 093701 (2015).
[Crossref]

D. S. Mehta, V. Srivastava, S. Nandy, A. Ahmad, and V. Dubey, “Full-field optical coherence tomography and microscopy using spatially incoherent monochromatic light,” in Handbook of Full-Field Optical Coherence Microscopy (Pan Stanford, 2016), pp. 379–414.

Subhash, H. M.

H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Technol. 2012, 1–26 (2012).
[Crossref]

Takeda, M.

Tinguely, J.-C.

A. Ahmad, V. Dubey, V. R. Singh, J.-C. Tinguely, C. I. Øie, D. L. Wolfson, D. S. Mehta, P. T. C. So, and B. S. Ahluwalia, “Quantitative phase microscopy of red blood cells during planar trapping and propulsion,” Lab Chip 18, 3025–3036 (2018).
[Crossref]

Vabre, L.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Wolfson, D. L.

A. Ahmad, V. Dubey, V. R. Singh, J.-C. Tinguely, C. I. Øie, D. L. Wolfson, D. S. Mehta, P. T. C. So, and B. S. Ahluwalia, “Quantitative phase microscopy of red blood cells during planar trapping and propulsion,” Lab Chip 18, 3025–3036 (2018).
[Crossref]

Adv. Opt. Technol. (1)

H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Technol. 2012, 1–26 (2012).
[Crossref]

Ann. Phys. (1)

I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Phys. 524, 787–804 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106, 093701 (2015).
[Crossref]

J. Opt. (1)

V. Ryabukho, D. Lyakin, A. Grebenyuk, and S. Klykov, “Wiener–Khintchin theorem for spatial coherence of optical wave field,” J. Opt. 15, 025405 (2013).
[Crossref]

J. Opt. A (2)

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
[Crossref]

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1982).
[Crossref]

Lab Chip (1)

A. Ahmad, V. Dubey, V. R. Singh, J.-C. Tinguely, C. I. Øie, D. L. Wolfson, D. S. Mehta, P. T. C. So, and B. S. Ahluwalia, “Quantitative phase microscopy of red blood cells during planar trapping and propulsion,” Lab Chip 18, 3025–3036 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Proc. SPIE (1)

V. Dubey, V. Singh, A. Ahmad, G. Singh, and D. S. Mehta, “White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water,” Proc. SPIE 9718, 97181F (2016).
[Crossref]

Sci. Rep. (1)

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S.-W. Kim, and Y.-J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7, 15318 (2017).
[Crossref]

Other (7)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

J. W. Goodman, Statistical Optics (Wiley, 2015).

A. Ahmad and D. S. Mehta, “Quantitative phase microscopy and tomography with spatially incoherent light,” in Advances in Optics: Reviews (2018), pp. 487–511.

D. S. Mehta, V. Srivastava, S. Nandy, A. Ahmad, and V. Dubey, “Full-field optical coherence tomography and microscopy using spatially incoherent monochromatic light,” in Handbook of Full-Field Optical Coherence Microscopy (Pan Stanford, 2016), pp. 379–414.

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).

A. Ahmad, V. Dubey, V. Singh, A. Butola, T. Joshi, and D. S. Mehta, “Reduction of spatial phase noise in the laser based digital holographic microscopy for the quantitative phase measurement of biological cells,” in European Conference on Biomedical Optics (Optical Society of America, 2017), p. 104140H.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Manifestation to determine longitudinal spatial coherence function of an extended source. ${S}( {{u},{v}} )$ is an extended light source. (b) Spatial periods and spatial frequencies of a plane wave propagating along the direction ${\overrightarrow{\rm N}}$.
Fig. 2.
Fig. 2. (a) Schematic diagram of the spatial coherence gated FF-OCT and OCM system. ${{\rm MO}_{1 - 3}}$, microscope objectives; BS, beam splitter; ${{\rm L}_{1 - 3}}$, lenses; RD, rotating diffuser; MMFB, multiple multimode fiber bundle; S, sample; ${{\rm M}_{1 - 2}}$, mirrors and CCD, charge-coupled device. $d$ is the distance between focal position of ${\rm MO1}$ and RD plane. (b, c) Intensity distribution at the output of MMFB at ${d} = {0}$ and 20 mm, respectively. The different gray values represent the amount of intensity at each fiber of MMFB.
Fig. 3.
Fig. 3. (a) Standard gauge blocks of height difference of 15 µm. (b, c) White light interferograms on the left-side and right-side gauge block. The shifting of white light fringe is carried out by vertically translating the sample stage in a step of 1 µm.
Fig. 4.
Fig. 4. LC functions of extended monochromatic light source synthesized from a highly coherent He-Ne laser (${lc}\sim {15}\,\,{\rm cm}$) as a function of distances “$d$” (a–e) 0–20 mm in a step of 5 mm, respectively. (f) Variation of the axial resolution of PTS as a function of distance “${d}$.”
Fig. 5.
Fig. 5. Visibility of the interferograms at the left-side and right-side gauge block as a function of distance “$d$.” (a–e) Recorded interferograms of two standard gauge blocks having 15 µm height difference corresponding to the values of $d$ equal to 0, 5, 10, 15, and 20 mm. The visibility is kept constant at the right-side gauge block.

Tables (2)

Tables Icon

Table 1. Axial Resolution “ Δ z ” of the PTS Synthesized from He-Ne Laser as a Function of Distance “ d ” between Focal Position of M O 1 and RD Plane

Tables Icon

Table 2. Variation of Visibility of the Interferograms at the Left-Side and Right-Side Gauge Block as a Function of Distance “ d a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Γ ( δ z , Δ t = 0 ) = S ( k z ) exp ( i k z δ z ) d k z ,
k z = 2 π Λ z = 2 π λ cos θ z ,
L c = 2 π Δ k z ,
L c = [ 2 sin 2 ( θ z / 2 ) λ + Δ λ λ 2 cos 2 ( θ z / 2 ) ] 1 ,
L c = λ / 2 sin 2 ( θ z / 2 ) .
f ( x , y ) = a ( x , y ) + b ( x , y ) cos [ 2 π i ( f x x + f y y ) + ϕ ( x , y ) ] ,
f ( x , y ) = a ( x , y ) + c ( x , y ) exp [ 2 π i ( f x x + f y y ) ] + c ( x , y ) exp [ 2 π i ( f x x + f y y ) ] ,
c ( x , y ) = b ( x , y ) exp ( i ϕ ( x , y ) ) .
F ( ξ x , ξ y ) = A ( ξ x , ξ y ) + C ( ξ x f x , ξ y f y ) + C ( ξ x + f x , ξ y + f y ) .
V = 2 × m a x i m u m ( a b s ( C ( ξ x f x , ξ y f y ) ) ) m a x i m u m ( a b s ( A ( ξ x , ξ y ) ) ) .

Metrics