Abstract

For this research, we have developed key technologies for a 1.5 µm pixel pitch spatial light modulator (SLM) using ${\rm{Ge}_{2}}{\rm{Sb}_{2}}{\rm{Te}_{5}}$ (GST) phase change material. To uniformly modulate each pixel, we designed a lateral pixel structure in which a heating current flows through a bottom indium tin oxide layer. To check hologram reconstruction both after multilevel fabrication processes and before implementing full source and driver circuits, we fabricated an $8\,\,{\rm{K}} \times 2\,\,{\rm{K}}$ hologram on the topology by changing the GST film’s phase using laser irradiation. To overcome the limitation of SLM size, we tested a physical tiling structure and found that flatness of tiled SLMs was the most important factor in the realization of holographic displays.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multichannel tunable narrowband mid-infrared optical filter based on phase-change material Ge2Sb2Te5 defect layers

Kun Zhou, Qiang Cheng, Lu Lu, Bowen Li, Jinlin Song, Mengting Si, and Zixue Luo
Appl. Opt. 59(3) 595-600 (2020)

Electrically actuated phase-change pixels for transmissive and reflective spatial light modulators in the near and mid infrared

Joshua Hendrickson, Haibo Liang, Richard Soref, and Jianwei Mu
Appl. Opt. 54(36) 10698-10704 (2015)

Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material

Alexej V. Pogrebnyakov, Jeremy A. Bossard, Jeremiah P. Turpin, J. David Musgraves, Hee Jung Shin, Clara Rivero-Baleine, Nikolas Podraza, Kathleen A. Richardson, Douglas H. Werner, and Theresa S. Mayer
Opt. Mater. Express 8(8) 2264-2275 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 2005).
  2. Y. Takaki and K. Fujii, “Viewing-zone scanning holographic display using a MEMS spatial light modulator,” Opt. Express 22, 24713–24721 (2014).
    [Crossref]
  3. H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
    [Crossref]
  4. J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
    [Crossref]
  5. https://holoeye.com/spatial-light-modulators/ .
  6. Y. Isomae, Y. Shibata, and T. Ishinabe, “Design of 1-µm-pitch liquid crystal spatial light modulators having dielectric shield wall structure for holographic display with wide field of view,” Opt. Rev. 24, 165–176 (2017).
    [Crossref]
  7. H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S. G. Shiva-Reddy, T. D. Wilkinson, and G. A. J. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24, OP331–OP336 (2012).
    [Crossref]
  8. G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  9. G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10, 4237–4245 (2018).
    [Crossref]
  10. H. B. Kang, Y. H. Kim, T. Y. Kim, S. M. Cho, S. H. Cheon, C. Y. Hwang, C. S. Hwang, and S. M. Yoon, “Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implenentation,” Jpn. J. Appl. Phys. 57, 082201 (2018).
    [Crossref]
  11. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change film,” Nature 511, 206–211 (2014).
    [Crossref]
  12. S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
    [Crossref]
  13. S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
    [Crossref]
  14. C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
    [Crossref]
  15. P. K. Shrestha, Y. T. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4, e259 (2015).
    [Crossref]
  16. Z. H. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan tiling,” Opt. Eng. 52, 015802 (2013).
    [Crossref]
  17. Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
    [Crossref]
  18. Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
    [Crossref]

2019 (2)

J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
[Crossref]

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

2018 (5)

G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10, 4237–4245 (2018).
[Crossref]

H. B. Kang, Y. H. Kim, T. Y. Kim, S. M. Cho, S. H. Cheon, C. Y. Hwang, C. S. Hwang, and S. M. Yoon, “Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implenentation,” Jpn. J. Appl. Phys. 57, 082201 (2018).
[Crossref]

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
[Crossref]

2017 (2)

Y. Isomae, Y. Shibata, and T. Ishinabe, “Design of 1-µm-pitch liquid crystal spatial light modulators having dielectric shield wall structure for holographic display with wide field of view,” Opt. Rev. 24, 165–176 (2017).
[Crossref]

S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
[Crossref]

2015 (2)

P. K. Shrestha, Y. T. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4, e259 (2015).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

2014 (3)

Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change film,” Nature 511, 206–211 (2014).
[Crossref]

Y. Takaki and K. Fujii, “Viewing-zone scanning holographic display using a MEMS spatial light modulator,” Opt. Express 22, 24713–24721 (2014).
[Crossref]

2013 (1)

Z. H. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

2012 (1)

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S. G. Shiva-Reddy, T. D. Wilkinson, and G. A. J. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24, OP331–OP336 (2012).
[Crossref]

Amaratunga, G. A. J.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S. G. Shiva-Reddy, T. D. Wilkinson, and G. A. J. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24, OP331–OP336 (2012).
[Crossref]

Bachmann, T.

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

Bandhu, L.

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

Bhaskaran, H.

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change film,” Nature 511, 206–211 (2014).
[Crossref]

Broughton, B.

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

Butler, T.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S. G. Shiva-Reddy, T. D. Wilkinson, and G. A. J. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24, OP331–OP336 (2012).
[Crossref]

Butt, H.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S. G. Shiva-Reddy, T. D. Wilkinson, and G. A. J. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24, OP331–OP336 (2012).
[Crossref]

Byun, C. W.

Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
[Crossref]

Castillo, S. G.

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

Cheon, S. H.

H. B. Kang, Y. H. Kim, T. Y. Kim, S. M. Cho, S. H. Cheon, C. Y. Hwang, C. S. Hwang, and S. M. Yoon, “Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implenentation,” Jpn. J. Appl. Phys. 57, 082201 (2018).
[Crossref]

Cho, J.

G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10, 4237–4245 (2018).
[Crossref]

Cho, S. H.

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

Cho, S. M.

H. B. Kang, Y. H. Kim, T. Y. Kim, S. M. Cho, S. H. Cheon, C. Y. Hwang, C. S. Hwang, and S. M. Yoon, “Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implenentation,” Jpn. J. Appl. Phys. 57, 082201 (2018).
[Crossref]

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
[Crossref]

Choi, B. S.

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

Choi, J. H.

J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
[Crossref]

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

Choi, K. H.

J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
[Crossref]

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

Chu, D.

P. K. Shrestha, Y. T. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4, e259 (2015).
[Crossref]

Chu, H. Y.

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
[Crossref]

Chun, Y. T.

P. K. Shrestha, Y. T. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4, e259 (2015).
[Crossref]

Dai, Q.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S. G. Shiva-Reddy, T. D. Wilkinson, and G. A. J. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24, OP331–OP336 (2012).
[Crossref]

Didewar, K.

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

Feng, L.

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

Fujii, K.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 2005).

Hosseini, P.

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change film,” Nature 511, 206–211 (2014).
[Crossref]

Hwang, C. S.

J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
[Crossref]

H. B. Kang, Y. H. Kim, T. Y. Kim, S. M. Cho, S. H. Cheon, C. Y. Hwang, C. S. Hwang, and S. M. Yoon, “Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implenentation,” Jpn. J. Appl. Phys. 57, 082201 (2018).
[Crossref]

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
[Crossref]

Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
[Crossref]

Hwang, C. Y.

J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
[Crossref]

H. B. Kang, Y. H. Kim, T. Y. Kim, S. M. Cho, S. H. Cheon, C. Y. Hwang, C. S. Hwang, and S. M. Yoon, “Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implenentation,” Jpn. J. Appl. Phys. 57, 082201 (2018).
[Crossref]

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
[Crossref]

Ishinabe, T.

Y. Isomae, Y. Shibata, and T. Ishinabe, “Design of 1-µm-pitch liquid crystal spatial light modulators having dielectric shield wall structure for holographic display with wide field of view,” Opt. Rev. 24, 165–176 (2017).
[Crossref]

Isomae, Y.

Y. Isomae, Y. Shibata, and T. Ishinabe, “Design of 1-µm-pitch liquid crystal spatial light modulators having dielectric shield wall structure for holographic display with wide field of view,” Opt. Rev. 24, 165–176 (2017).
[Crossref]

Jang, S. H.

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

Jeon, H. G.

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

Jo, S. C.

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

Kang, H. B.

H. B. Kang, Y. H. Kim, T. Y. Kim, S. M. Cho, S. H. Cheon, C. Y. Hwang, C. S. Hwang, and S. M. Yoon, “Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implenentation,” Jpn. J. Appl. Phys. 57, 082201 (2018).
[Crossref]

S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
[Crossref]

Kenney, M.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Kim, G. H.

J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
[Crossref]

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
[Crossref]

Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
[Crossref]

Kim, H.

G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10, 4237–4245 (2018).
[Crossref]

Kim, H. N.

S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
[Crossref]

Kim, H. O.

J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
[Crossref]

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

Kim, J. W.

J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
[Crossref]

Kim, S. C.

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

Kim, T. Y.

H. B. Kang, Y. H. Kim, T. Y. Kim, S. M. Cho, S. H. Cheon, C. Y. Hwang, C. S. Hwang, and S. M. Yoon, “Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implenentation,” Jpn. J. Appl. Phys. 57, 082201 (2018).
[Crossref]

S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
[Crossref]

Kim, W. T.

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

Kim, Y. H.

J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
[Crossref]

H. B. Kang, Y. H. Kim, T. Y. Kim, S. M. Cho, S. H. Cheon, C. Y. Hwang, C. S. Hwang, and S. M. Yoon, “Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implenentation,” Jpn. J. Appl. Phys. 57, 082201 (2018).
[Crossref]

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
[Crossref]

Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
[Crossref]

Kwag, J. O.

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

Lee, B.

G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10, 4237–4245 (2018).
[Crossref]

Lee, G. Y.

G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10, 4237–4245 (2018).
[Crossref]

Lee, H. S.

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

Lee, J.

Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
[Crossref]

Lee, K.

G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10, 4237–4245 (2018).
[Crossref]

Lee, M. L.

Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
[Crossref]

Lee, S. Y.

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10, 4237–4245 (2018).
[Crossref]

S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
[Crossref]

Lee, W. J.

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

Li, G.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Liang, X.

Z. H. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

Lum, Z. H.

Z. H. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

Montelongo, Y.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S. G. Shiva-Reddy, T. D. Wilkinson, and G. A. J. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24, OP331–OP336 (2012).
[Crossref]

Muhlenbernd, H.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Oh, H.

Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
[Crossref]

Pan, Y.

Z. H. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

Pi, J. E.

J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
[Crossref]

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
[Crossref]

QiJun, Y.

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

Rajesekharan, R.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S. G. Shiva-Reddy, T. D. Wilkinson, and G. A. J. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24, OP331–OP336 (2012).
[Crossref]

Rho, J.

G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10, 4237–4245 (2018).
[Crossref]

Ryu, H.

S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
[Crossref]

Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
[Crossref]

Shibata, Y.

Y. Isomae, Y. Shibata, and T. Ishinabe, “Design of 1-µm-pitch liquid crystal spatial light modulators having dielectric shield wall structure for holographic display with wide field of view,” Opt. Rev. 24, 165–176 (2017).
[Crossref]

Shiva-Reddy, S. G.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S. G. Shiva-Reddy, T. D. Wilkinson, and G. A. J. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24, OP331–OP336 (2012).
[Crossref]

Shrestha, P. K.

P. K. Shrestha, Y. T. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4, e259 (2015).
[Crossref]

Song, K. K.

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

Takaki, Y.

Talagrand, C.

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

Triggs, G.

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

Wilkinson, T. D.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S. G. Shiva-Reddy, T. D. Wilkinson, and G. A. J. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24, OP331–OP336 (2012).
[Crossref]

Wright, C. D.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change film,” Nature 511, 206–211 (2014).
[Crossref]

Wu, Y.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
[Crossref]

Xu, P.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
[Crossref]

Xu, X.

Z. H. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

Yang, J. H.

J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
[Crossref]

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

Yoon, G.

G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10, 4237–4245 (2018).
[Crossref]

Yoon, S. M.

H. B. Kang, Y. H. Kim, T. Y. Kim, S. M. Cho, S. H. Cheon, C. Y. Hwang, C. S. Hwang, and S. M. Yoon, “Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implenentation,” Jpn. J. Appl. Phys. 57, 082201 (2018).
[Crossref]

Yu, Z.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
[Crossref]

Yun, H.

G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10, 4237–4245 (2018).
[Crossref]

Zentgraf, T.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhang, S.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhang, W.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
[Crossref]

Zheng, G.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zheng, J.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
[Crossref]

Zheng, R.

Z. H. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

Adv. Mater. (1)

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S. G. Shiva-Reddy, T. D. Wilkinson, and G. A. J. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24, OP331–OP336 (2012).
[Crossref]

ETRI J. (1)

J. H. Choi, J. E. Pi, C. Y. Hwang, J. H. Yang, Y. H. Kim, G. H. Kim, H. O. Kim, K. H. Choi, J. W. Kim, and C. S. Hwang, “Evolution of spatial light modulator for high-definition digital holography,” ETRI J. 41,23–31 (2019).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
[Crossref]

J. Opt. (1)

Y. H. Kim, C. W. Byun, H. Oh, J. Lee, J. E. Pi, G. H. Kim, M. L. Lee, H. Ryu, H. Y. Chu, and C. S. Hwang, “Non-uniform sampling and wide range angular spectrum method,” J. Opt. 16, 125710 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. B. Kang, Y. H. Kim, T. Y. Kim, S. M. Cho, S. H. Cheon, C. Y. Hwang, C. S. Hwang, and S. M. Yoon, “Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implenentation,” Jpn. J. Appl. Phys. 57, 082201 (2018).
[Crossref]

Light Sci. Appl. (1)

P. K. Shrestha, Y. T. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4, e259 (2015).
[Crossref]

Nanoscale (2)

C. Y. Hwang, G. H. Kim, J. H. Yang, C. S. Hwang, S. M. Cho, W. J. Lee, J. E. Pi, J. H. Choi, K. H. Choi, H. O. Kim, S. Y. Lee, and Y. H. Kim, “Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials,” Nanoscale 57, 061606 (2018).
[Crossref]

G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10, 4237–4245 (2018).
[Crossref]

Nat. Nanotechnol. (1)

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Nature (1)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change film,” Nature 511, 206–211 (2014).
[Crossref]

Opt. Eng. (1)

Z. H. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

Opt. Express (1)

Opt. Rev. (1)

Y. Isomae, Y. Shibata, and T. Ishinabe, “Design of 1-µm-pitch liquid crystal spatial light modulators having dielectric shield wall structure for holographic display with wide field of view,” Opt. Rev. 24, 165–176 (2017).
[Crossref]

Sci. Rep. (1)

S. Y. Lee, Y. H. Kim, S. M. Cho, G. H. Kim, T. Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C. Y. Hwang, and C. S. Hwang, “Holographic image generation with a thin-film resonance caused by chalcogenide phase change material,” Sci. Rep. 7, 41152 (2017).
[Crossref]

SID Digest (2)

S. G. Castillo, L. Feng, T. Bachmann, L. Bandhu, C. Talagrand, G. Triggs, K. Didewar, B. Broughton, Y. QiJun, H. Bhaskaran, and P. Hosseini, “Solid state reflective display with LTPS diode backplane,” SID Digest 50, 807–810 (2019).
[Crossref]

H. S. Lee, S. H. Jang, H. G. Jeon, B. S. Choi, S. H. Cho, W. T. Kim, K. K. Song, H. Y. Chu, S. C. Kim, S. C. Jo, and J. O. Kwag, “Large-area ultra-high density 5.36” 10  K × 6  K 2250  ppi display,” SID Digest 49, 607–609 (2018).
[Crossref]

Other (2)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 2005).

https://holoeye.com/spatial-light-modulators/ .

Supplementary Material (2)

NameDescription
» Visualization 1       Operation of GST devices using transistors.
» Visualization 2       Hologram reconstruction from 8??K × 2??K GST devices on the topology.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Real part and (b) imaginary part of refractive index as a function of wavelength variation when GST phase is amorphous (filled rectangle) or crystalline (open rectangle).
Fig. 2.
Fig. 2. Schematic (a) vertical and (b) lateral pixel structure of GST device with a current path marked by a blue polyline. Inset is the typical microscope image when the nonuniform phase transition, indicated by the yellow arrow, occurs in the vertical pixel structure.
Fig. 3.
Fig. 3. (a) Schematic structure of a transistor and a GST device with a current path marked by a red polyline; (b) optical microscope image of some area of a ${{128}} \times {{128}}$ array of transistors and GST devices where the center pixel inside a red box changes its phase to the amorphous state (see Visualization 1); (c) simulated reflectance of ITO/GST/ITO/oxide/reflector structure as a function of wavelength when GST is in amorphous phase and in crystalline phase.
Fig. 4.
Fig. 4. (a) Cross-sectional view of GST hologram using TEM; (b) top view of GST hologram where the blue region is crystallized by XeCl laser and the lightly colored region is in the crystalline phase; (c) experimental setup for hologram reconstruction; (d) reconstructed image using a green laser from a 1.5 µm pixel pitch $8\,\,{\rm{K}} \times 2\,\,{\rm{K}}$ array of GST devices (see Visualization 2).
Fig. 5.
Fig. 5. Geometry for calculating a hologram pattern with a checkered pattern in the background and Korean letters in the foreground.
Fig. 6.
Fig. 6. (a) Usual SLM structure with bonding pads (red dots) and wire bonding (green arcs) around the edge; (b) proposed SLM structure with bonding pads (red dots) and wire bonding (green arcs) on the top side only; (c) physically tiled ${{2}} \times {{2}}$ SLMs.
Fig. 7.
Fig. 7. Geometry for calculating the hologram for the tiled SLM which has a ${{1.5}}\,\,{\unicode{x00B5}} {\rm{m}} \times {{9.4}}\,\,{\unicode{x00B5}} {\rm{m}}$ pixel pitch and a ${{19.2}}\,\,{\rm{mm}} \times {{19.3}}\,\,{\rm{mm}}$ panel size.
Fig. 8.
Fig. 8. Simulated reconstructed hologram image when the process error of the distance between two SLMs is (a) 0 µm, (b) 300 µm, (c) 600 µm and when the process error of the rotation angle between two SLMs is (d) 1°, (e) 2°, (f) 3°.
Fig. 9.
Fig. 9. (a) One point off the tiled SLMs at distance $h$ is reconstructed by two SLMs. (b) When SLM2 is tilted by the angle $\theta $ with respect to SLM1 and two SLMs are the reflective type SLMs, the reconstructed point from SLM1 is separated from that of SLM2 with a distance of ${d}$ .
Fig. 10.
Fig. 10. (a) When the center part of the tiled SLMs is higher than the edge, the experimentally reconstructed (b) real image is duplicated and (c) imaginary image is shrunken. (d) When the center part of the tiled SLMs is lower than the edge, the experimentally reconstructed (e) real image is shrunken and (f) the imaginary image is duplicated.
Fig. 11.
Fig. 11. (a) Tiled SLMs; (b) the experimental real image; (c) the experimental imaginary image when the tiled SLM achieves flatness without the tilting error.

Metrics