Abstract

In digital holography, the inherited speckle noise degrades imaging quality due to the coherent laser source. To overcome this problem, a hybrid method for speckle noise reduction is presented by combining a novel angular diversity approach with the block-matching and 3D filtering (BM3D) algorithm. A serial of holograms is first captured by the proposed recording approach, and then the image with high signal-to-noise ratio is obtained by averaging multiple reconstructed intensity images. Finally, the residual noise in the averaged image is further eliminated by the BM3D filtering algorithm. The speckle noise is significantly suppressed, and a nearly speckle-free image can be obtained. Experimental results demonstrate the effectiveness of the proposed method.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Speckle noise suppression in digital holography by angular diversity with phase-only spatial light modulator

Yunxin Wang, Puhui Meng, Dayong Wang, Lu Rong, and Spozmai Panezai
Opt. Express 21(17) 19568-19578 (2013)

Quantization noise and its reduction in lensless Fourier digital holography

Nitesh Pandey and Bryan Hennelly
Appl. Opt. 50(7) B58-B70 (2011)

Comparative study of multi-look processing for phase map de-noising in digital Fresnel holographic interferometry

Silvio Montrésor, Pasquale Memmolo, Vittorio Bianco, Pietro Ferraro, and Pascal Picart
J. Opt. Soc. Am. A 36(2) A59-A66 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts & Company, 2006).
  2. W. C. Wang and J. S. Hsu, “Investigation of vibration characteristics of bonded structures by time-averaged electronic speckle pattern interferometry,” Opt. Laser Eng. 48, 958–965 (2010).
    [Crossref]
  3. J. Qin, Z. Gao, X. Wang, and S. W. Yang, “Three-dimensional continuous displacement measurement with temporal speckle pattern interferometry,” Sensors 16, 2020 (2016).
    [Crossref]
  4. A. Wei and T. E. Carlsson, “Speckle interferometry for measurement of continuous deformations,” Opt. Laser Eng. 40, 529–541 (2003).
    [Crossref]
  5. M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Laser Eng. 73, 33–39 (2015).
    [Crossref]
  6. D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. H. Scheld, and G. V. Bally, “Lensless Fourier holography for digital holographic interferometry on biological samples,” Opt. Laser Eng. 36, 241–249 (2001).
    [Crossref]
  7. V. Cazac, A. Meshalkin, E. Achimova, V. Abashkin, V. Katkovnik, I. Shevkunov, D. Claus, and G. Pedrini, “Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography,” Appl. Opt. 57, 507–513 (2018).
    [Crossref]
  8. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994).
    [Crossref]
  9. M. Kumar, A. S. Birhman, S. Kannan, and C. Shakher, “Measurement of initial displacement of canine and molar in human maxilla under different canine retraction methods using digital holographic interferometry,” Opt. Eng. 57, 094106 (2018).
    [Crossref]
  10. G. Cesar, R. Tavera, H. Manuel, J. M. Flores-Moreno, F. R. Claudio, and M. S. Fernando, “Cortical bone quality affectations and their strength impact analysis using holographic interferometry,” Biomed. Opt. Express 9, 4818–4833 (2018).
    [Crossref]
  11. G. Pedrini, V. Martínez-García, P. Weidmann, M. Wenzelburger, A. Killinger, U. Weber, S. Schmauder, R. Gadow, and W. Osten, “Residual stress analysis of ceramic coating by laser ablation and digital holography,” Exp. Mech. 56, 683–701 (2016).
    [Crossref]
  12. M. Kumar and C. Shakher, “Experimental characterization of the hygroscopic properties of wood during convective drying using digital holographic interferometry,” Appl. Opt. 55, 960–968 (2016).
    [Crossref]
  13. C. Falldorf, S. L. Huferath-Von, C. V. Kopylow, and R. B. Bergmann, “Reduction of speckle noise in multiwavelength contouring,” Appl. Opt. 51, 8211–8215 (2012).
    [Crossref]
  14. S. H. Shin and B. Javidi, “Speckle-reduced three-dimensional volume holographic display by use of integral imaging,” Appl. Opt. 41, 2644–2649 (2002).
    [Crossref]
  15. V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Parurzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7, 48 (2018).
    [Crossref]
  16. J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005).
    [Crossref]
  17. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and J. N. Thomas, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A 24, 1617–1622 (2007).
    [Crossref]
  18. A. Sharma, G. Sheoran, and Z. A. Jaffery, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Laser Eng. 46, 42–47 (2008).
    [Crossref]
  19. T. B. Le, W. Li, M. L. Piao, M. A. Alam, and N. Kim, “Noise reduction in digital hologram using wavelet transforms and smooth filter for three-dimensional display,” IEEE Photonics J. 5, 6800414 (2013).
    [Crossref]
  20. M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 14, 139–152 (2014).
    [Crossref]
  21. R. Srivastava, J. R. P. Gupta, and H. Parthasarthy, “Comparison of PDE based and other techniques for speckle reduction from digitally reconstructed holographic images,” Opt. Laser Eng. 48, 626–635 (2010).
    [Crossref]
  22. M. Leo, C. Distante, M. Paturzo, P. Memmolo, M. Locatelli, E. Pugliese, R. Meucci, and P. Ferraro, “Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics,” J. Disp. Technol. 9, 904–909 (2013).
    [Crossref]
  23. A. Stern, V. Farber, A. Uzan, and Y. Rivenson, “Digital speckle reduction in holograms—a comparison between methods,” Proc. SPIE 9117, 12588 (2014).
    [Crossref]
  24. S. Montresor and P. Picart, “Quantitative appraisal for noise reduction in digital holographic phase imaging,” Opt. Express 24, 14322–14343 (2016).
    [Crossref]
  25. A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denoising,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (2005), pp. 60–65.
  26. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process 16, 2080–2095 (2007).
    [Crossref]
  27. A. Uzan, Y. Rivenson, and A. Stern, “Speckle denoising in digital holography by nonlocal means filtering,” Appl. Opt. 52, A195–A200 (2013).
    [Crossref]
  28. V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5, e16142 (2016).
    [Crossref]
  29. L. P. Che, W. Xiao, F. Pan, B. Dong, and Z. Zhong, “Reduction of speckle noise in digital holography by combination of averaging several reconstructed images and modified nonlocal means filtering,” Opt. Commun. 426, 9–15 (2018).
    [Crossref]
  30. S. Shin, Y. C. Kim, K. Lee, K. Kim, Y. L. Kim, H. Park, and Y. K. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
    [Crossref]
  31. M. Leon-Rodriguez, R. Rodriguez-Vera, J. A. Rayas, and S. Calixto, “High topographical accuracy by optical shot noise reduction in digital holographic microscopy,” J. Opt. Soc. Am. A 29, 498–506 (2012).
    [Crossref]
  32. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49, 4385–4391 (2010).
    [Crossref]
  33. J. M. Leng, X. Z. Sang, and B. B. Yan, “Speckle suppression in digital holographic imaging with random phases and different wavelengths,” Opt. Eng. 53, 033105 (2014).
    [Crossref]
  34. Y. X. Wang, P. H. Meng, D. Y. Wang, L. Rong, and S. Panezai, “Speckle noise suppression in digital holography by angular diversity with phase-only spatial light modulator,” Opt. Express 21, 19568–19578 (2013).
    [Crossref]
  35. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8, 653–655 (2010).
  36. F. Pan, W. Xiao, S. Liu, F. J. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object,” Opt. Express 19, 3862–3869 (2011).
    [Crossref]
  37. T. Baumbach, E. Kolenovic, V. Kebbel, and W. Juptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt. 45, 6077–6085 (2006).
    [Crossref]
  38. J. Garcia-Sucerquia, J. H. Ramirez, and R. Castaneda, “Incoherent recovering of the spatial resolution in digital holography,” Opt. Commun. 260, 62–67 (2006).
    [Crossref]
  39. D. Hincapie, J. Herrera-Ramirez, and J. Garcia-Sucerquia, “Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms,” Opt. Lett. 40, 1623–1626 (2015).
    [Crossref]
  40. V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38, 619–621 (2013).
    [Crossref]
  41. J. M. Leng, Z. M. Zhou, F. B. Li, Q. Y. Zheng, and G. Liu, “Speckle noise suppression using part of pixels in a single-exposure digital hologram,” Opt. Eng. 56, 053103 (2017).
    [Crossref]
  42. M. Haouat, J. Garcia-Sucerquia, A. Kellou, and P. Picart, “Reduction of speckle noise in holographic images using spatial jittering in numerical reconstructions,” Opt. Lett. 42, 1047–1050 (2017).
    [Crossref]
  43. J. M. Leng, J. H. Zhou, X. P. Lang, and X. Y. Li, “Two-stage method to suppress speckle noise in digital holography,” Opt. Rev. 22, 844–852 (2015).
    [Crossref]
  44. V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “A one-shot denoising method in Digital Holography based on numerical multi-look and 3D block matching filtering,” in 3D Image Acquisition & Display: Technology, Perception & Applications (2016).
  45. W. Xiao, J. Zhang, L. Rong, F. Pan, S. Liu, F. J. Wang, and A. G. He, “Improvement of speckle noise suppression in digital holography by rotating linear polarization state,” Chin. Opt. Lett. 9, 36–38 (2011).
  46. M. Lebrun, “An analysis and implementation of the BM3D image denoising method,” Image Process. on Line 2, 175–213 (2012).
    [Crossref]
  47. http://www.cs.tut.fi/~foi/GCF-BM3D/ .

2018 (5)

M. Kumar, A. S. Birhman, S. Kannan, and C. Shakher, “Measurement of initial displacement of canine and molar in human maxilla under different canine retraction methods using digital holographic interferometry,” Opt. Eng. 57, 094106 (2018).
[Crossref]

G. Cesar, R. Tavera, H. Manuel, J. M. Flores-Moreno, F. R. Claudio, and M. S. Fernando, “Cortical bone quality affectations and their strength impact analysis using holographic interferometry,” Biomed. Opt. Express 9, 4818–4833 (2018).
[Crossref]

V. Cazac, A. Meshalkin, E. Achimova, V. Abashkin, V. Katkovnik, I. Shevkunov, D. Claus, and G. Pedrini, “Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography,” Appl. Opt. 57, 507–513 (2018).
[Crossref]

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Parurzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7, 48 (2018).
[Crossref]

L. P. Che, W. Xiao, F. Pan, B. Dong, and Z. Zhong, “Reduction of speckle noise in digital holography by combination of averaging several reconstructed images and modified nonlocal means filtering,” Opt. Commun. 426, 9–15 (2018).
[Crossref]

2017 (2)

J. M. Leng, Z. M. Zhou, F. B. Li, Q. Y. Zheng, and G. Liu, “Speckle noise suppression using part of pixels in a single-exposure digital hologram,” Opt. Eng. 56, 053103 (2017).
[Crossref]

M. Haouat, J. Garcia-Sucerquia, A. Kellou, and P. Picart, “Reduction of speckle noise in holographic images using spatial jittering in numerical reconstructions,” Opt. Lett. 42, 1047–1050 (2017).
[Crossref]

2016 (5)

S. Montresor and P. Picart, “Quantitative appraisal for noise reduction in digital holographic phase imaging,” Opt. Express 24, 14322–14343 (2016).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5, e16142 (2016).
[Crossref]

G. Pedrini, V. Martínez-García, P. Weidmann, M. Wenzelburger, A. Killinger, U. Weber, S. Schmauder, R. Gadow, and W. Osten, “Residual stress analysis of ceramic coating by laser ablation and digital holography,” Exp. Mech. 56, 683–701 (2016).
[Crossref]

M. Kumar and C. Shakher, “Experimental characterization of the hygroscopic properties of wood during convective drying using digital holographic interferometry,” Appl. Opt. 55, 960–968 (2016).
[Crossref]

J. Qin, Z. Gao, X. Wang, and S. W. Yang, “Three-dimensional continuous displacement measurement with temporal speckle pattern interferometry,” Sensors 16, 2020 (2016).
[Crossref]

2015 (4)

M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Laser Eng. 73, 33–39 (2015).
[Crossref]

S. Shin, Y. C. Kim, K. Lee, K. Kim, Y. L. Kim, H. Park, and Y. K. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

J. M. Leng, J. H. Zhou, X. P. Lang, and X. Y. Li, “Two-stage method to suppress speckle noise in digital holography,” Opt. Rev. 22, 844–852 (2015).
[Crossref]

D. Hincapie, J. Herrera-Ramirez, and J. Garcia-Sucerquia, “Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms,” Opt. Lett. 40, 1623–1626 (2015).
[Crossref]

2014 (3)

J. M. Leng, X. Z. Sang, and B. B. Yan, “Speckle suppression in digital holographic imaging with random phases and different wavelengths,” Opt. Eng. 53, 033105 (2014).
[Crossref]

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 14, 139–152 (2014).
[Crossref]

A. Stern, V. Farber, A. Uzan, and Y. Rivenson, “Digital speckle reduction in holograms—a comparison between methods,” Proc. SPIE 9117, 12588 (2014).
[Crossref]

2013 (5)

M. Leo, C. Distante, M. Paturzo, P. Memmolo, M. Locatelli, E. Pugliese, R. Meucci, and P. Ferraro, “Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics,” J. Disp. Technol. 9, 904–909 (2013).
[Crossref]

A. Uzan, Y. Rivenson, and A. Stern, “Speckle denoising in digital holography by nonlocal means filtering,” Appl. Opt. 52, A195–A200 (2013).
[Crossref]

Y. X. Wang, P. H. Meng, D. Y. Wang, L. Rong, and S. Panezai, “Speckle noise suppression in digital holography by angular diversity with phase-only spatial light modulator,” Opt. Express 21, 19568–19578 (2013).
[Crossref]

T. B. Le, W. Li, M. L. Piao, M. A. Alam, and N. Kim, “Noise reduction in digital hologram using wavelet transforms and smooth filter for three-dimensional display,” IEEE Photonics J. 5, 6800414 (2013).
[Crossref]

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38, 619–621 (2013).
[Crossref]

2012 (3)

2011 (2)

F. Pan, W. Xiao, S. Liu, F. J. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object,” Opt. Express 19, 3862–3869 (2011).
[Crossref]

W. Xiao, J. Zhang, L. Rong, F. Pan, S. Liu, F. J. Wang, and A. G. He, “Improvement of speckle noise suppression in digital holography by rotating linear polarization state,” Chin. Opt. Lett. 9, 36–38 (2011).

2010 (4)

L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8, 653–655 (2010).

S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49, 4385–4391 (2010).
[Crossref]

R. Srivastava, J. R. P. Gupta, and H. Parthasarthy, “Comparison of PDE based and other techniques for speckle reduction from digitally reconstructed holographic images,” Opt. Laser Eng. 48, 626–635 (2010).
[Crossref]

W. C. Wang and J. S. Hsu, “Investigation of vibration characteristics of bonded structures by time-averaged electronic speckle pattern interferometry,” Opt. Laser Eng. 48, 958–965 (2010).
[Crossref]

2008 (1)

A. Sharma, G. Sheoran, and Z. A. Jaffery, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Laser Eng. 46, 42–47 (2008).
[Crossref]

2007 (2)

J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and J. N. Thomas, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A 24, 1617–1622 (2007).
[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process 16, 2080–2095 (2007).
[Crossref]

2006 (2)

T. Baumbach, E. Kolenovic, V. Kebbel, and W. Juptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt. 45, 6077–6085 (2006).
[Crossref]

J. Garcia-Sucerquia, J. H. Ramirez, and R. Castaneda, “Incoherent recovering of the spatial resolution in digital holography,” Opt. Commun. 260, 62–67 (2006).
[Crossref]

2005 (1)

J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005).
[Crossref]

2003 (1)

A. Wei and T. E. Carlsson, “Speckle interferometry for measurement of continuous deformations,” Opt. Laser Eng. 40, 529–541 (2003).
[Crossref]

2002 (1)

2001 (1)

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. H. Scheld, and G. V. Bally, “Lensless Fourier holography for digital holographic interferometry on biological samples,” Opt. Laser Eng. 36, 241–249 (2001).
[Crossref]

1994 (1)

Abashkin, V.

Achimova, E.

Alam, M. A.

T. B. Le, W. Li, M. L. Piao, M. A. Alam, and N. Kim, “Noise reduction in digital hologram using wavelet transforms and smooth filter for three-dimensional display,” IEEE Photonics J. 5, 6800414 (2013).
[Crossref]

Bally, G. V.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. H. Scheld, and G. V. Bally, “Lensless Fourier holography for digital holographic interferometry on biological samples,” Opt. Laser Eng. 36, 241–249 (2001).
[Crossref]

Baumbach, T.

Bergmann, R. B.

Bianco, V.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Parurzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7, 48 (2018).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5, e16142 (2016).
[Crossref]

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38, 619–621 (2013).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “A one-shot denoising method in Digital Holography based on numerical multi-look and 3D block matching filtering,” in 3D Image Acquisition & Display: Technology, Perception & Applications (2016).

Birhman, A. S.

M. Kumar, A. S. Birhman, S. Kannan, and C. Shakher, “Measurement of initial displacement of canine and molar in human maxilla under different canine retraction methods using digital holographic interferometry,” Opt. Eng. 57, 094106 (2018).
[Crossref]

Buades, A.

A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denoising,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (2005), pp. 60–65.

Calixto, S.

Carlsson, T. E.

A. Wei and T. E. Carlsson, “Speckle interferometry for measurement of continuous deformations,” Opt. Laser Eng. 40, 529–541 (2003).
[Crossref]

Castaneda, R.

J. Garcia-Sucerquia, J. H. Ramirez, and R. Castaneda, “Incoherent recovering of the spatial resolution in digital holography,” Opt. Commun. 260, 62–67 (2006).
[Crossref]

Castro, A.

Cazac, V.

Cesar, G.

Che, L. P.

L. P. Che, W. Xiao, F. Pan, B. Dong, and Z. Zhong, “Reduction of speckle noise in digital holography by combination of averaging several reconstructed images and modified nonlocal means filtering,” Opt. Commun. 426, 9–15 (2018).
[Crossref]

Claudio, F. R.

Claus, D.

Coll, B.

A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denoising,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (2005), pp. 60–65.

Dabov, K.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process 16, 2080–2095 (2007).
[Crossref]

Deiwick, M.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. H. Scheld, and G. V. Bally, “Lensless Fourier holography for digital holographic interferometry on biological samples,” Opt. Laser Eng. 36, 241–249 (2001).
[Crossref]

Delere, H.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. H. Scheld, and G. V. Bally, “Lensless Fourier holography for digital holographic interferometry on biological samples,” Opt. Laser Eng. 36, 241–249 (2001).
[Crossref]

Dirksen, D.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. H. Scheld, and G. V. Bally, “Lensless Fourier holography for digital holographic interferometry on biological samples,” Opt. Laser Eng. 36, 241–249 (2001).
[Crossref]

Distante, C.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Parurzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7, 48 (2018).
[Crossref]

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 14, 139–152 (2014).
[Crossref]

M. Leo, C. Distante, M. Paturzo, P. Memmolo, M. Locatelli, E. Pugliese, R. Meucci, and P. Ferraro, “Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics,” J. Disp. Technol. 9, 904–909 (2013).
[Crossref]

Dong, B.

L. P. Che, W. Xiao, F. Pan, B. Dong, and Z. Zhong, “Reduction of speckle noise in digital holography by combination of averaging several reconstructed images and modified nonlocal means filtering,” Opt. Commun. 426, 9–15 (2018).
[Crossref]

Droste, H.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. H. Scheld, and G. V. Bally, “Lensless Fourier holography for digital holographic interferometry on biological samples,” Opt. Laser Eng. 36, 241–249 (2001).
[Crossref]

Egiazarian, K.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process 16, 2080–2095 (2007).
[Crossref]

Falldorf, C.

Farber, V.

A. Stern, V. Farber, A. Uzan, and Y. Rivenson, “Digital speckle reduction in holograms—a comparison between methods,” Proc. SPIE 9117, 12588 (2014).
[Crossref]

Fernando, M. S.

Ferraro, P.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Parurzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7, 48 (2018).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5, e16142 (2016).
[Crossref]

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 14, 139–152 (2014).
[Crossref]

M. Leo, C. Distante, M. Paturzo, P. Memmolo, M. Locatelli, E. Pugliese, R. Meucci, and P. Ferraro, “Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics,” J. Disp. Technol. 9, 904–909 (2013).
[Crossref]

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38, 619–621 (2013).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “A one-shot denoising method in Digital Holography based on numerical multi-look and 3D block matching filtering,” in 3D Image Acquisition & Display: Technology, Perception & Applications (2016).

Finizio, A.

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5, e16142 (2016).
[Crossref]

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38, 619–621 (2013).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “A one-shot denoising method in Digital Holography based on numerical multi-look and 3D block matching filtering,” in 3D Image Acquisition & Display: Technology, Perception & Applications (2016).

Flores-Moreno, J. M.

Foi, A.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process 16, 2080–2095 (2007).
[Crossref]

Frauel, Y.

Gadow, R.

G. Pedrini, V. Martínez-García, P. Weidmann, M. Wenzelburger, A. Killinger, U. Weber, S. Schmauder, R. Gadow, and W. Osten, “Residual stress analysis of ceramic coating by laser ablation and digital holography,” Exp. Mech. 56, 683–701 (2016).
[Crossref]

Gao, Z.

J. Qin, Z. Gao, X. Wang, and S. W. Yang, “Three-dimensional continuous displacement measurement with temporal speckle pattern interferometry,” Sensors 16, 2020 (2016).
[Crossref]

Garcia-Sucerquia, J.

M. Haouat, J. Garcia-Sucerquia, A. Kellou, and P. Picart, “Reduction of speckle noise in holographic images using spatial jittering in numerical reconstructions,” Opt. Lett. 42, 1047–1050 (2017).
[Crossref]

D. Hincapie, J. Herrera-Ramirez, and J. Garcia-Sucerquia, “Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms,” Opt. Lett. 40, 1623–1626 (2015).
[Crossref]

J. Garcia-Sucerquia, J. H. Ramirez, and R. Castaneda, “Incoherent recovering of the spatial resolution in digital holography,” Opt. Commun. 260, 62–67 (2006).
[Crossref]

J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005).
[Crossref]

Goodman, J. W.

Gupta, J. R. P.

R. Srivastava, J. R. P. Gupta, and H. Parthasarthy, “Comparison of PDE based and other techniques for speckle reduction from digitally reconstructed holographic images,” Opt. Laser Eng. 48, 626–635 (2010).
[Crossref]

Haouat, M.

He, A. G.

W. Xiao, J. Zhang, L. Rong, F. Pan, S. Liu, F. J. Wang, and A. G. He, “Improvement of speckle noise suppression in digital holography by rotating linear polarization state,” Chin. Opt. Lett. 9, 36–38 (2011).

Hennelly, B. M.

Herrera-Ramirez, J.

Hincapie, D.

Hsu, J. S.

W. C. Wang and J. S. Hsu, “Investigation of vibration characteristics of bonded structures by time-averaged electronic speckle pattern interferometry,” Opt. Laser Eng. 48, 958–965 (2010).
[Crossref]

Huferath-Von, S. L.

Jaffery, Z. A.

A. Sharma, G. Sheoran, and Z. A. Jaffery, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Laser Eng. 46, 42–47 (2008).
[Crossref]

Javidi, B.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Parurzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7, 48 (2018).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5, e16142 (2016).
[Crossref]

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38, 619–621 (2013).
[Crossref]

J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and J. N. Thomas, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A 24, 1617–1622 (2007).
[Crossref]

S. H. Shin and B. Javidi, “Speckle-reduced three-dimensional volume holographic display by use of integral imaging,” Appl. Opt. 41, 2644–2649 (2002).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “A one-shot denoising method in Digital Holography based on numerical multi-look and 3D block matching filtering,” in 3D Image Acquisition & Display: Technology, Perception & Applications (2016).

Juptner, W.

Kannan, S.

M. Kumar, A. S. Birhman, S. Kannan, and C. Shakher, “Measurement of initial displacement of canine and molar in human maxilla under different canine retraction methods using digital holographic interferometry,” Opt. Eng. 57, 094106 (2018).
[Crossref]

Katkovnik, V.

Kebbel, V.

Kellou, A.

Kemper, B.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. H. Scheld, and G. V. Bally, “Lensless Fourier holography for digital holographic interferometry on biological samples,” Opt. Laser Eng. 36, 241–249 (2001).
[Crossref]

Killinger, A.

G. Pedrini, V. Martínez-García, P. Weidmann, M. Wenzelburger, A. Killinger, U. Weber, S. Schmauder, R. Gadow, and W. Osten, “Residual stress analysis of ceramic coating by laser ablation and digital holography,” Exp. Mech. 56, 683–701 (2016).
[Crossref]

Kim, K.

S. Shin, Y. C. Kim, K. Lee, K. Kim, Y. L. Kim, H. Park, and Y. K. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Kim, N.

T. B. Le, W. Li, M. L. Piao, M. A. Alam, and N. Kim, “Noise reduction in digital hologram using wavelet transforms and smooth filter for three-dimensional display,” IEEE Photonics J. 5, 6800414 (2013).
[Crossref]

Kim, Y. C.

S. Shin, Y. C. Kim, K. Lee, K. Kim, Y. L. Kim, H. Park, and Y. K. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Kim, Y. L.

S. Shin, Y. C. Kim, K. Lee, K. Kim, Y. L. Kim, H. Park, and Y. K. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Kolenovic, E.

Kopylow, C. V.

Kubota, S.

Kumar, M.

M. Kumar, A. S. Birhman, S. Kannan, and C. Shakher, “Measurement of initial displacement of canine and molar in human maxilla under different canine retraction methods using digital holographic interferometry,” Opt. Eng. 57, 094106 (2018).
[Crossref]

M. Kumar and C. Shakher, “Experimental characterization of the hygroscopic properties of wood during convective drying using digital holographic interferometry,” Appl. Opt. 55, 960–968 (2016).
[Crossref]

M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Laser Eng. 73, 33–39 (2015).
[Crossref]

Lang, X. P.

J. M. Leng, J. H. Zhou, X. P. Lang, and X. Y. Li, “Two-stage method to suppress speckle noise in digital holography,” Opt. Rev. 22, 844–852 (2015).
[Crossref]

Le, T. B.

T. B. Le, W. Li, M. L. Piao, M. A. Alam, and N. Kim, “Noise reduction in digital hologram using wavelet transforms and smooth filter for three-dimensional display,” IEEE Photonics J. 5, 6800414 (2013).
[Crossref]

Lebrun, M.

M. Lebrun, “An analysis and implementation of the BM3D image denoising method,” Image Process. on Line 2, 175–213 (2012).
[Crossref]

Lee, K.

S. Shin, Y. C. Kim, K. Lee, K. Kim, Y. L. Kim, H. Park, and Y. K. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Leng, J. M.

J. M. Leng, Z. M. Zhou, F. B. Li, Q. Y. Zheng, and G. Liu, “Speckle noise suppression using part of pixels in a single-exposure digital hologram,” Opt. Eng. 56, 053103 (2017).
[Crossref]

J. M. Leng, J. H. Zhou, X. P. Lang, and X. Y. Li, “Two-stage method to suppress speckle noise in digital holography,” Opt. Rev. 22, 844–852 (2015).
[Crossref]

J. M. Leng, X. Z. Sang, and B. B. Yan, “Speckle suppression in digital holographic imaging with random phases and different wavelengths,” Opt. Eng. 53, 033105 (2014).
[Crossref]

Leo, M.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Parurzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7, 48 (2018).
[Crossref]

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 14, 139–152 (2014).
[Crossref]

M. Leo, C. Distante, M. Paturzo, P. Memmolo, M. Locatelli, E. Pugliese, R. Meucci, and P. Ferraro, “Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics,” J. Disp. Technol. 9, 904–909 (2013).
[Crossref]

Leon-Rodriguez, M.

Li, F. B.

J. M. Leng, Z. M. Zhou, F. B. Li, Q. Y. Zheng, and G. Liu, “Speckle noise suppression using part of pixels in a single-exposure digital hologram,” Opt. Eng. 56, 053103 (2017).
[Crossref]

Li, R.

Li, W.

T. B. Le, W. Li, M. L. Piao, M. A. Alam, and N. Kim, “Noise reduction in digital hologram using wavelet transforms and smooth filter for three-dimensional display,” IEEE Photonics J. 5, 6800414 (2013).
[Crossref]

Li, X. Y.

J. M. Leng, J. H. Zhou, X. P. Lang, and X. Y. Li, “Two-stage method to suppress speckle noise in digital holography,” Opt. Rev. 22, 844–852 (2015).
[Crossref]

Liu, G.

J. M. Leng, Z. M. Zhou, F. B. Li, Q. Y. Zheng, and G. Liu, “Speckle noise suppression using part of pixels in a single-exposure digital hologram,” Opt. Eng. 56, 053103 (2017).
[Crossref]

Liu, S.

Locatelli, M.

M. Leo, C. Distante, M. Paturzo, P. Memmolo, M. Locatelli, E. Pugliese, R. Meucci, and P. Ferraro, “Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics,” J. Disp. Technol. 9, 904–909 (2013).
[Crossref]

Manuel, H.

Martínez-García, V.

G. Pedrini, V. Martínez-García, P. Weidmann, M. Wenzelburger, A. Killinger, U. Weber, S. Schmauder, R. Gadow, and W. Osten, “Residual stress analysis of ceramic coating by laser ablation and digital holography,” Exp. Mech. 56, 683–701 (2016).
[Crossref]

Maycock, J.

McDonald, J. B.

Memmolo, P.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Parurzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7, 48 (2018).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5, e16142 (2016).
[Crossref]

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 14, 139–152 (2014).
[Crossref]

M. Leo, C. Distante, M. Paturzo, P. Memmolo, M. Locatelli, E. Pugliese, R. Meucci, and P. Ferraro, “Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics,” J. Disp. Technol. 9, 904–909 (2013).
[Crossref]

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38, 619–621 (2013).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “A one-shot denoising method in Digital Holography based on numerical multi-look and 3D block matching filtering,” in 3D Image Acquisition & Display: Technology, Perception & Applications (2016).

Meng, P. H.

Meshalkin, A.

Meucci, R.

M. Leo, C. Distante, M. Paturzo, P. Memmolo, M. Locatelli, E. Pugliese, R. Meucci, and P. Ferraro, “Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics,” J. Disp. Technol. 9, 904–909 (2013).
[Crossref]

Montresor, S.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Parurzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7, 48 (2018).
[Crossref]

S. Montresor and P. Picart, “Quantitative appraisal for noise reduction in digital holographic phase imaging,” Opt. Express 24, 14322–14343 (2016).
[Crossref]

Morel, J. M.

A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denoising,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (2005), pp. 60–65.

Osten, W.

G. Pedrini, V. Martínez-García, P. Weidmann, M. Wenzelburger, A. Killinger, U. Weber, S. Schmauder, R. Gadow, and W. Osten, “Residual stress analysis of ceramic coating by laser ablation and digital holography,” Exp. Mech. 56, 683–701 (2016).
[Crossref]

Pan, F.

L. P. Che, W. Xiao, F. Pan, B. Dong, and Z. Zhong, “Reduction of speckle noise in digital holography by combination of averaging several reconstructed images and modified nonlocal means filtering,” Opt. Commun. 426, 9–15 (2018).
[Crossref]

W. Xiao, J. Zhang, L. Rong, F. Pan, S. Liu, F. J. Wang, and A. G. He, “Improvement of speckle noise suppression in digital holography by rotating linear polarization state,” Chin. Opt. Lett. 9, 36–38 (2011).

F. Pan, W. Xiao, S. Liu, F. J. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object,” Opt. Express 19, 3862–3869 (2011).
[Crossref]

L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8, 653–655 (2010).

Panezai, S.

Park, H.

S. Shin, Y. C. Kim, K. Lee, K. Kim, Y. L. Kim, H. Park, and Y. K. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Park, Y. K.

S. Shin, Y. C. Kim, K. Lee, K. Kim, Y. L. Kim, H. Park, and Y. K. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Parthasarthy, H.

R. Srivastava, J. R. P. Gupta, and H. Parthasarthy, “Comparison of PDE based and other techniques for speckle reduction from digitally reconstructed holographic images,” Opt. Laser Eng. 48, 626–635 (2010).
[Crossref]

Parurzo, M.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Parurzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7, 48 (2018).
[Crossref]

Paturzo, M.

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5, e16142 (2016).
[Crossref]

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 14, 139–152 (2014).
[Crossref]

M. Leo, C. Distante, M. Paturzo, P. Memmolo, M. Locatelli, E. Pugliese, R. Meucci, and P. Ferraro, “Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics,” J. Disp. Technol. 9, 904–909 (2013).
[Crossref]

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38, 619–621 (2013).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “A one-shot denoising method in Digital Holography based on numerical multi-look and 3D block matching filtering,” in 3D Image Acquisition & Display: Technology, Perception & Applications (2016).

Pedrini, G.

V. Cazac, A. Meshalkin, E. Achimova, V. Abashkin, V. Katkovnik, I. Shevkunov, D. Claus, and G. Pedrini, “Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography,” Appl. Opt. 57, 507–513 (2018).
[Crossref]

G. Pedrini, V. Martínez-García, P. Weidmann, M. Wenzelburger, A. Killinger, U. Weber, S. Schmauder, R. Gadow, and W. Osten, “Residual stress analysis of ceramic coating by laser ablation and digital holography,” Exp. Mech. 56, 683–701 (2016).
[Crossref]

Piao, M. L.

T. B. Le, W. Li, M. L. Piao, M. A. Alam, and N. Kim, “Noise reduction in digital hologram using wavelet transforms and smooth filter for three-dimensional display,” IEEE Photonics J. 5, 6800414 (2013).
[Crossref]

Picart, P.

Piccolo, R.

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 14, 139–152 (2014).
[Crossref]

Prieto, D. V.

J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005).
[Crossref]

Pugliese, E.

M. Leo, C. Distante, M. Paturzo, P. Memmolo, M. Locatelli, E. Pugliese, R. Meucci, and P. Ferraro, “Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics,” J. Disp. Technol. 9, 904–909 (2013).
[Crossref]

Qin, J.

J. Qin, Z. Gao, X. Wang, and S. W. Yang, “Three-dimensional continuous displacement measurement with temporal speckle pattern interferometry,” Sensors 16, 2020 (2016).
[Crossref]

Ramirez, J. A. H.

J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005).
[Crossref]

Ramirez, J. H.

J. Garcia-Sucerquia, J. H. Ramirez, and R. Castaneda, “Incoherent recovering of the spatial resolution in digital holography,” Opt. Commun. 260, 62–67 (2006).
[Crossref]

Rayas, J. A.

Rivenson, Y.

A. Stern, V. Farber, A. Uzan, and Y. Rivenson, “Digital speckle reduction in holograms—a comparison between methods,” Proc. SPIE 9117, 12588 (2014).
[Crossref]

A. Uzan, Y. Rivenson, and A. Stern, “Speckle denoising in digital holography by nonlocal means filtering,” Appl. Opt. 52, A195–A200 (2013).
[Crossref]

Rodriguez-Vera, R.

Rong, L.

Sang, X. Z.

J. M. Leng, X. Z. Sang, and B. B. Yan, “Speckle suppression in digital holographic imaging with random phases and different wavelengths,” Opt. Eng. 53, 033105 (2014).
[Crossref]

Scheld, H. H.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. H. Scheld, and G. V. Bally, “Lensless Fourier holography for digital holographic interferometry on biological samples,” Opt. Laser Eng. 36, 241–249 (2001).
[Crossref]

Schmauder, S.

G. Pedrini, V. Martínez-García, P. Weidmann, M. Wenzelburger, A. Killinger, U. Weber, S. Schmauder, R. Gadow, and W. Osten, “Residual stress analysis of ceramic coating by laser ablation and digital holography,” Exp. Mech. 56, 683–701 (2016).
[Crossref]

Schnars, U.

Shakher, C.

M. Kumar, A. S. Birhman, S. Kannan, and C. Shakher, “Measurement of initial displacement of canine and molar in human maxilla under different canine retraction methods using digital holographic interferometry,” Opt. Eng. 57, 094106 (2018).
[Crossref]

M. Kumar and C. Shakher, “Experimental characterization of the hygroscopic properties of wood during convective drying using digital holographic interferometry,” Appl. Opt. 55, 960–968 (2016).
[Crossref]

M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Laser Eng. 73, 33–39 (2015).
[Crossref]

Sharma, A.

A. Sharma, G. Sheoran, and Z. A. Jaffery, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Laser Eng. 46, 42–47 (2008).
[Crossref]

Sheoran, G.

A. Sharma, G. Sheoran, and Z. A. Jaffery, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Laser Eng. 46, 42–47 (2008).
[Crossref]

Shevkunov, I.

Shin, S.

S. Shin, Y. C. Kim, K. Lee, K. Kim, Y. L. Kim, H. Park, and Y. K. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Shin, S. H.

Srivastava, R.

R. Srivastava, J. R. P. Gupta, and H. Parthasarthy, “Comparison of PDE based and other techniques for speckle reduction from digitally reconstructed holographic images,” Opt. Laser Eng. 48, 626–635 (2010).
[Crossref]

Stern, A.

A. Stern, V. Farber, A. Uzan, and Y. Rivenson, “Digital speckle reduction in holograms—a comparison between methods,” Proc. SPIE 9117, 12588 (2014).
[Crossref]

A. Uzan, Y. Rivenson, and A. Stern, “Speckle denoising in digital holography by nonlocal means filtering,” Appl. Opt. 52, A195–A200 (2013).
[Crossref]

Tavera, R.

Thomas, J. N.

Uzan, A.

A. Stern, V. Farber, A. Uzan, and Y. Rivenson, “Digital speckle reduction in holograms—a comparison between methods,” Proc. SPIE 9117, 12588 (2014).
[Crossref]

A. Uzan, Y. Rivenson, and A. Stern, “Speckle denoising in digital holography by nonlocal means filtering,” Appl. Opt. 52, A195–A200 (2013).
[Crossref]

Wang, D. Y.

Wang, F. J.

F. Pan, W. Xiao, S. Liu, F. J. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object,” Opt. Express 19, 3862–3869 (2011).
[Crossref]

W. Xiao, J. Zhang, L. Rong, F. Pan, S. Liu, F. J. Wang, and A. G. He, “Improvement of speckle noise suppression in digital holography by rotating linear polarization state,” Chin. Opt. Lett. 9, 36–38 (2011).

Wang, W. C.

W. C. Wang and J. S. Hsu, “Investigation of vibration characteristics of bonded structures by time-averaged electronic speckle pattern interferometry,” Opt. Laser Eng. 48, 958–965 (2010).
[Crossref]

Wang, X.

J. Qin, Z. Gao, X. Wang, and S. W. Yang, “Three-dimensional continuous displacement measurement with temporal speckle pattern interferometry,” Sensors 16, 2020 (2016).
[Crossref]

Wang, Y. X.

Weber, U.

G. Pedrini, V. Martínez-García, P. Weidmann, M. Wenzelburger, A. Killinger, U. Weber, S. Schmauder, R. Gadow, and W. Osten, “Residual stress analysis of ceramic coating by laser ablation and digital holography,” Exp. Mech. 56, 683–701 (2016).
[Crossref]

Wei, A.

A. Wei and T. E. Carlsson, “Speckle interferometry for measurement of continuous deformations,” Opt. Laser Eng. 40, 529–541 (2003).
[Crossref]

Weidmann, P.

G. Pedrini, V. Martínez-García, P. Weidmann, M. Wenzelburger, A. Killinger, U. Weber, S. Schmauder, R. Gadow, and W. Osten, “Residual stress analysis of ceramic coating by laser ablation and digital holography,” Exp. Mech. 56, 683–701 (2016).
[Crossref]

Wenzelburger, M.

G. Pedrini, V. Martínez-García, P. Weidmann, M. Wenzelburger, A. Killinger, U. Weber, S. Schmauder, R. Gadow, and W. Osten, “Residual stress analysis of ceramic coating by laser ablation and digital holography,” Exp. Mech. 56, 683–701 (2016).
[Crossref]

Xiao, W.

L. P. Che, W. Xiao, F. Pan, B. Dong, and Z. Zhong, “Reduction of speckle noise in digital holography by combination of averaging several reconstructed images and modified nonlocal means filtering,” Opt. Commun. 426, 9–15 (2018).
[Crossref]

W. Xiao, J. Zhang, L. Rong, F. Pan, S. Liu, F. J. Wang, and A. G. He, “Improvement of speckle noise suppression in digital holography by rotating linear polarization state,” Chin. Opt. Lett. 9, 36–38 (2011).

F. Pan, W. Xiao, S. Liu, F. J. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object,” Opt. Express 19, 3862–3869 (2011).
[Crossref]

L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8, 653–655 (2010).

Yan, B. B.

J. M. Leng, X. Z. Sang, and B. B. Yan, “Speckle suppression in digital holographic imaging with random phases and different wavelengths,” Opt. Eng. 53, 033105 (2014).
[Crossref]

Yang, S. W.

J. Qin, Z. Gao, X. Wang, and S. W. Yang, “Three-dimensional continuous displacement measurement with temporal speckle pattern interferometry,” Sensors 16, 2020 (2016).
[Crossref]

Zhang, J.

W. Xiao, J. Zhang, L. Rong, F. Pan, S. Liu, F. J. Wang, and A. G. He, “Improvement of speckle noise suppression in digital holography by rotating linear polarization state,” Chin. Opt. Lett. 9, 36–38 (2011).

Zheng, Q. Y.

J. M. Leng, Z. M. Zhou, F. B. Li, Q. Y. Zheng, and G. Liu, “Speckle noise suppression using part of pixels in a single-exposure digital hologram,” Opt. Eng. 56, 053103 (2017).
[Crossref]

Zhong, Z.

L. P. Che, W. Xiao, F. Pan, B. Dong, and Z. Zhong, “Reduction of speckle noise in digital holography by combination of averaging several reconstructed images and modified nonlocal means filtering,” Opt. Commun. 426, 9–15 (2018).
[Crossref]

Zhou, J. H.

J. M. Leng, J. H. Zhou, X. P. Lang, and X. Y. Li, “Two-stage method to suppress speckle noise in digital holography,” Opt. Rev. 22, 844–852 (2015).
[Crossref]

Zhou, Z. M.

J. M. Leng, Z. M. Zhou, F. B. Li, Q. Y. Zheng, and G. Liu, “Speckle noise suppression using part of pixels in a single-exposure digital hologram,” Opt. Eng. 56, 053103 (2017).
[Crossref]

Appl. Opt. (7)

Biomed. Opt. Express (1)

Chin. Opt. Lett. (2)

L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8, 653–655 (2010).

W. Xiao, J. Zhang, L. Rong, F. Pan, S. Liu, F. J. Wang, and A. G. He, “Improvement of speckle noise suppression in digital holography by rotating linear polarization state,” Chin. Opt. Lett. 9, 36–38 (2011).

Exp. Mech. (1)

G. Pedrini, V. Martínez-García, P. Weidmann, M. Wenzelburger, A. Killinger, U. Weber, S. Schmauder, R. Gadow, and W. Osten, “Residual stress analysis of ceramic coating by laser ablation and digital holography,” Exp. Mech. 56, 683–701 (2016).
[Crossref]

IEEE Photonics J. (1)

T. B. Le, W. Li, M. L. Piao, M. A. Alam, and N. Kim, “Noise reduction in digital hologram using wavelet transforms and smooth filter for three-dimensional display,” IEEE Photonics J. 5, 6800414 (2013).
[Crossref]

IEEE Trans. Image Process (1)

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process 16, 2080–2095 (2007).
[Crossref]

Image Process. on Line (1)

M. Lebrun, “An analysis and implementation of the BM3D image denoising method,” Image Process. on Line 2, 175–213 (2012).
[Crossref]

J. Disp. Technol. (1)

M. Leo, C. Distante, M. Paturzo, P. Memmolo, M. Locatelli, E. Pugliese, R. Meucci, and P. Ferraro, “Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics,” J. Disp. Technol. 9, 904–909 (2013).
[Crossref]

J. Opt. Soc. Am. A (3)

Light Sci. Appl. (2)

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5, e16142 (2016).
[Crossref]

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Parurzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7, 48 (2018).
[Crossref]

Opt. Commun. (2)

L. P. Che, W. Xiao, F. Pan, B. Dong, and Z. Zhong, “Reduction of speckle noise in digital holography by combination of averaging several reconstructed images and modified nonlocal means filtering,” Opt. Commun. 426, 9–15 (2018).
[Crossref]

J. Garcia-Sucerquia, J. H. Ramirez, and R. Castaneda, “Incoherent recovering of the spatial resolution in digital holography,” Opt. Commun. 260, 62–67 (2006).
[Crossref]

Opt. Eng. (4)

J. M. Leng, Z. M. Zhou, F. B. Li, Q. Y. Zheng, and G. Liu, “Speckle noise suppression using part of pixels in a single-exposure digital hologram,” Opt. Eng. 56, 053103 (2017).
[Crossref]

J. M. Leng, X. Z. Sang, and B. B. Yan, “Speckle suppression in digital holographic imaging with random phases and different wavelengths,” Opt. Eng. 53, 033105 (2014).
[Crossref]

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 14, 139–152 (2014).
[Crossref]

M. Kumar, A. S. Birhman, S. Kannan, and C. Shakher, “Measurement of initial displacement of canine and molar in human maxilla under different canine retraction methods using digital holographic interferometry,” Opt. Eng. 57, 094106 (2018).
[Crossref]

Opt. Express (3)

Opt. Laser Eng. (6)

A. Sharma, G. Sheoran, and Z. A. Jaffery, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Laser Eng. 46, 42–47 (2008).
[Crossref]

W. C. Wang and J. S. Hsu, “Investigation of vibration characteristics of bonded structures by time-averaged electronic speckle pattern interferometry,” Opt. Laser Eng. 48, 958–965 (2010).
[Crossref]

A. Wei and T. E. Carlsson, “Speckle interferometry for measurement of continuous deformations,” Opt. Laser Eng. 40, 529–541 (2003).
[Crossref]

M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Laser Eng. 73, 33–39 (2015).
[Crossref]

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. H. Scheld, and G. V. Bally, “Lensless Fourier holography for digital holographic interferometry on biological samples,” Opt. Laser Eng. 36, 241–249 (2001).
[Crossref]

R. Srivastava, J. R. P. Gupta, and H. Parthasarthy, “Comparison of PDE based and other techniques for speckle reduction from digitally reconstructed holographic images,” Opt. Laser Eng. 48, 626–635 (2010).
[Crossref]

Opt. Lett. (3)

Opt. Rev. (1)

J. M. Leng, J. H. Zhou, X. P. Lang, and X. Y. Li, “Two-stage method to suppress speckle noise in digital holography,” Opt. Rev. 22, 844–852 (2015).
[Crossref]

Optik (1)

J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005).
[Crossref]

Proc. SPIE (2)

A. Stern, V. Farber, A. Uzan, and Y. Rivenson, “Digital speckle reduction in holograms—a comparison between methods,” Proc. SPIE 9117, 12588 (2014).
[Crossref]

S. Shin, Y. C. Kim, K. Lee, K. Kim, Y. L. Kim, H. Park, and Y. K. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Sensors (1)

J. Qin, Z. Gao, X. Wang, and S. W. Yang, “Three-dimensional continuous displacement measurement with temporal speckle pattern interferometry,” Sensors 16, 2020 (2016).
[Crossref]

Other (4)

J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts & Company, 2006).

A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denoising,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (2005), pp. 60–65.

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “A one-shot denoising method in Digital Holography based on numerical multi-look and 3D block matching filtering,” in 3D Image Acquisition & Display: Technology, Perception & Applications (2016).

http://www.cs.tut.fi/~foi/GCF-BM3D/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematic of the basic setup for recording multiple digital holograms.
Fig. 2.
Fig. 2. Theoretical contrast versus the number of holograms used.
Fig. 3.
Fig. 3. Scheme of the BM3D algorithm.
Fig. 4.
Fig. 4. Correlation coefficient between the reference image and the other reconstructed intensity images.
Fig. 5.
Fig. 5. Experimental results. (a) Single reconstructed intensity image without diffuser. (b) Averaged image without diffuser. (c) Single reconstructed intensity image with diffuser. (d) Averaged image with diffuser. (e)–(h) Histograms corresponding to image block in white rectangle of (a)–(d).
Fig. 6.
Fig. 6. Contrast values versus the number of reconstructed intensity images used in averaging process.
Fig. 7.
Fig. 7. Experimental results. (a) Averaged image. (b) Averaged image filtered by BM3D algorithm. (c) Averaged image filtered by median filtering algorithm. (d)–(f) Histograms corresponding to image block in white rectangle of (a)–(c).
Fig. 8.
Fig. 8. De-noising results of single reconstructed intensity image. (a) BM3D filtering algorithm. (b) Median filtering algorithm.
Fig. 9.
Fig. 9. Speckle reduction by hybrid method based on different number of reconstructed intensity images used.
Fig. 10.
Fig. 10. Contrast values versus the number of reconstructed intensity images used in averaging process.
Fig. 11.
Fig. 11. (a) Experimental results. (a) Single reconstructed intensity image. (b) Single reconstructed intensity image filtered by BM3D algorithm. (c) Averaged image. (d) Averaged image filtered by BM3D algorithm.
Fig. 12.
Fig. 12. Intensity profiles along the dashed line extracted from four images in Fig. 11.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C = σ I I ¯ ,
ρ n , m = i L j K [ I n ( i , j ) I n ¯ ] [ I m ( i , j ) I m ¯ ] i L j K [ I n ( i , j ) I n ¯ ] 2 i L j K [ I m ( i , j ) I m ¯ ] 2 ,
I o = B M 3 D ( I i , σ ) ,

Metrics