Abstract

We propose a numerical method for phase curvature compensation in digital holographic microscopy, in which the phase curvature is compensated for by subtracting a numerical phase mask from the distorted phase. The parameters of the phase mask are obtained based on phase gradient fitting and optimization, in which the initial mask parameters are obtained by fitting the phase gradient, and then more accurate mask parameters are determined using a spectrum energy search. The compensation can be executed in a hologram without extra devices or any prior knowledge of the setup and specimen. A computer simulation and experimental results demonstrated the feasibility of the proposed method.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-step phase aberration compensation method based on optimal principal component analysis and subsampling for digital holographic microscopy

Xiangyu Zhang, Jiasong Sun, Zuxin Zhang, Yao Fan, Qian Chen, and Chao Zuo
Appl. Opt. 58(2) 389-397 (2019)

Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection

Thanh Nguyen, Vy Bui, Van Lam, Christopher B. Raub, Lin-Ching Chang, and George Nehmetallah
Opt. Express 25(13) 15043-15057 (2017)

Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position

Frédéric Montfort, Florian Charrière, Tristan Colomb, Etienne Cuche, Pierre Marquet, and Christian Depeursinge
J. Opt. Soc. Am. A 23(11) 2944-2953 (2006)

References

  • View by:
  • |
  • |
  • |

  1. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
    [Crossref]
  2. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [Crossref]
  3. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [Crossref]
  4. M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
    [Crossref]
  5. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
    [Crossref]
  6. O. Monnom, F. Dubois, C. Yourassowsky, and J. C. Legros, “Improvement in visibility of an in-focus reconstructed image in digital holography by reduction of the influence of out-of-focus objects,” Appl. Opt. 44, 3827–3832 (2005).
    [Crossref]
  7. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [Crossref]
  8. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492–4506 (2005).
    [Crossref]
  9. B. Das, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Quantitative phase microscopy using dual-plane in-line digital holography,” Appl. Opt. 51, 1387–1395 (2012).
    [Crossref]
  10. B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15, 036009 (2010).
    [Crossref]
  11. N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Opt. Express 18, 3264–3273 (2010).
    [Crossref]
  12. G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, M. Iodice, C. Magro, and G. Pierattini, “Characterization of MEMS structures by microscopic digital holography,” Proc. SPIE 4945, 71–78 (2003).
    [Crossref]
  13. Q. Weijuan, Y. Yingjie, Z. Wenjing, Y. Hao, and A. Asundi, “Phase measurement via in-line digital holographic microscopy,” Proc. SPIE 7155, 71550R (2008).
    [Crossref]
  14. L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046–5051 (2001).
    [Crossref]
  15. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28, 1257–1259 (2003).
    [Crossref]
  16. F. Pan, W. Xiao, S. Liu, and L. Rong, “Application of three-dimensional spatial correlation properties of coherent noise in phase noise suppression for digital holographic microscopy,” Opt. Laser Technol. 51, 67–71 (2013).
    [Crossref]
  17. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38, 1724–1726 (2013).
    [Crossref]
  18. J. Min, B. Yao, P. Gao, B. Ma, S. Yan, F. Peng, J. Zheng, T. Ye, and R. Rupp, “Wave-front curvature compensation of polarization phase-shifting digital holography,” Optik 123, 1525–1529 (2012).
    [Crossref]
  19. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
    [Crossref]
  20. E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A. 28, 1410–1417 (2011).
    [Crossref]
  21. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19, 046022 (2014).
    [Crossref]
  22. C. J. Mann, L. Yu, C. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [Crossref]
  23. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [Crossref]
  24. H. Cui, D. Wang, Y. Wang, J. Zhao, and Y. Zhang, “Phase aberration compensation by spectrum centering in digital holographic microscopy,” Opt. Commun. 284, 4152–4155 (2011).
    [Crossref]
  25. Z. Ma, H. Li, and X. Lü, “Complex amplitude reconstruction and phase aberrations compensation in phase-shifting in-line image digital holographic microscopy,” Chin. Opt. Lett. 7, 1076–1078 (2009).
    [Crossref]
  26. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
    [Crossref]
  27. J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282, 3873–3877 (2009).
    [Crossref]
  28. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006).
    [Crossref]
  29. J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Optimal principal component analysis-based numerical phase aberration compensation method for digital holography,” Opt. Lett. 41, 1293–1296 (2016).
    [Crossref]
  30. T. Nguyen, V. Bui, V. Lam, C. B. Raub, L. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25, 15043–15057 (2017).
    [Crossref]
  31. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [Crossref]
  32. S. Liu, W. Xiao, and F. Pan, “Automatic compensation of phase aberrations in digital holographic microscopy for living cells investigation by using spectral energy analysis,” Opt. Laser Technol. 57, 169–174 (2014).
    [Crossref]
  33. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001).
    [Crossref]

2018 (1)

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

2017 (1)

2016 (1)

2014 (2)

S. Liu, W. Xiao, and F. Pan, “Automatic compensation of phase aberrations in digital holographic microscopy for living cells investigation by using spectral energy analysis,” Opt. Laser Technol. 57, 169–174 (2014).
[Crossref]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19, 046022 (2014).
[Crossref]

2013 (2)

F. Pan, W. Xiao, S. Liu, and L. Rong, “Application of three-dimensional spatial correlation properties of coherent noise in phase noise suppression for digital holographic microscopy,” Opt. Laser Technol. 51, 67–71 (2013).
[Crossref]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38, 1724–1726 (2013).
[Crossref]

2012 (2)

J. Min, B. Yao, P. Gao, B. Ma, S. Yan, F. Peng, J. Zheng, T. Ye, and R. Rupp, “Wave-front curvature compensation of polarization phase-shifting digital holography,” Optik 123, 1525–1529 (2012).
[Crossref]

B. Das, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Quantitative phase microscopy using dual-plane in-line digital holography,” Appl. Opt. 51, 1387–1395 (2012).
[Crossref]

2011 (2)

H. Cui, D. Wang, Y. Wang, J. Zhao, and Y. Zhang, “Phase aberration compensation by spectrum centering in digital holographic microscopy,” Opt. Commun. 284, 4152–4155 (2011).
[Crossref]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A. 28, 1410–1417 (2011).
[Crossref]

2010 (2)

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15, 036009 (2010).
[Crossref]

N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Opt. Express 18, 3264–3273 (2010).
[Crossref]

2009 (2)

Z. Ma, H. Li, and X. Lü, “Complex amplitude reconstruction and phase aberrations compensation in phase-shifting in-line image digital holographic microscopy,” Chin. Opt. Lett. 7, 1076–1078 (2009).
[Crossref]

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282, 3873–3877 (2009).
[Crossref]

2008 (2)

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

Q. Weijuan, Y. Yingjie, Z. Wenjing, Y. Hao, and A. Asundi, “Phase measurement via in-line digital holographic microscopy,” Proc. SPIE 7155, 71550R (2008).
[Crossref]

2007 (1)

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[Crossref]

2006 (3)

2005 (5)

2003 (3)

2001 (2)

2000 (1)

1999 (1)

Abboud, M.

Alferi, D.

Alfieri, D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[Crossref]

Asundi, A.

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38, 1724–1726 (2013).
[Crossref]

Q. Weijuan, Y. Yingjie, Z. Wenjing, Y. Hao, and A. Asundi, “Phase measurement via in-line digital holographic microscopy,” Proc. SPIE 7155, 71550R (2008).
[Crossref]

Asundi, A. K.

Atlan, M.

Bauwens, A.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15, 036009 (2010).
[Crossref]

Bianco, V.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

Bredebusch, I.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Bui, V.

Bun, P.

Carapezza, E.

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Chang, L.

Chen, Q.

Colomb, T.

Coppey-Moisan, M.

Coppola, G.

Cuche, E.

Cui, H.

H. Cui, D. Wang, Y. Wang, J. Zhao, and Y. Zhang, “Phase aberration compensation by spectrum centering in digital holographic microscopy,” Opt. Commun. 284, 4152–4155 (2011).
[Crossref]

Das, B.

De Nicola, S.

De Petrocellis, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[Crossref]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006).
[Crossref]

Depeursinge, C.

Desbiolles, P.

Di, J.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282, 3873–3877 (2009).
[Crossref]

Doblas, A.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19, 046022 (2014).
[Crossref]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A. 28, 1410–1417 (2011).
[Crossref]

Domschke, W.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Dubois, F.

Emery, Y.

Ferraro, P.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A. 28, 1410–1417 (2011).
[Crossref]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[Crossref]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006).
[Crossref]

G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, M. Iodice, C. Magro, and G. Pierattini, “Characterization of MEMS structures by microscopic digital holography,” Proc. SPIE 4945, 71–78 (2003).
[Crossref]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
[Crossref]

P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28, 1257–1259 (2003).
[Crossref]

Finizio, A.

Gao, P.

J. Min, B. Yao, P. Gao, B. Ma, S. Yan, F. Peng, J. Zheng, T. Ye, and R. Rupp, “Wave-front curvature compensation of polarization phase-shifting digital holography,” Optik 123, 1525–1529 (2012).
[Crossref]

Garcia-Sucerquia, J.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19, 046022 (2014).
[Crossref]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[Crossref]

Grilli, S.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[Crossref]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
[Crossref]

G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, M. Iodice, C. Magro, and G. Pierattini, “Characterization of MEMS structures by microscopic digital holography,” Proc. SPIE 4945, 71–78 (2003).
[Crossref]

Gross, M.

Hao, Y.

Q. Weijuan, Y. Yingjie, Z. Wenjing, Y. Hao, and A. Asundi, “Phase measurement via in-line digital holographic microscopy,” Proc. SPIE 7155, 71550R (2008).
[Crossref]

Iodice, M.

G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, M. Iodice, C. Magro, and G. Pierattini, “Characterization of MEMS structures by microscopic digital holography,” Proc. SPIE 4945, 71–78 (2003).
[Crossref]

Javidi, B.

Jericho, M. H.

Jericho, S. K.

Jiang, H.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282, 3873–3877 (2009).
[Crossref]

Joud, F.

Karch, H.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15, 036009 (2010).
[Crossref]

Kato, J.

Kemper, B.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15, 036009 (2010).
[Crossref]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Ketelhut, S.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15, 036009 (2010).
[Crossref]

Kim, M. K.

Klages, P.

Kreuzer, H. J.

Lam, V.

Langehanenberg, P.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15, 036009 (2010).
[Crossref]

Legros, J. C.

Li, H.

Liu, S.

S. Liu, W. Xiao, and F. Pan, “Automatic compensation of phase aberrations in digital holographic microscopy for living cells investigation by using spectral energy analysis,” Opt. Laser Technol. 57, 169–174 (2014).
[Crossref]

F. Pan, W. Xiao, S. Liu, and L. Rong, “Application of three-dimensional spatial correlation properties of coherent noise in phase noise suppression for digital holographic microscopy,” Opt. Laser Technol. 51, 67–71 (2013).
[Crossref]

Lo, C.

Lü, X.

Ma, B.

J. Min, B. Yao, P. Gao, B. Ma, S. Yan, F. Peng, J. Zheng, T. Ye, and R. Rupp, “Wave-front curvature compensation of polarization phase-shifting digital holography,” Optik 123, 1525–1529 (2012).
[Crossref]

Ma, Z.

Magistretti, P. J.

Magro, C.

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
[Crossref]

G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, M. Iodice, C. Magro, and G. Pierattini, “Characterization of MEMS structures by microscopic digital holography,” Proc. SPIE 4945, 71–78 (2003).
[Crossref]

Mann, C. J.

Marquet, P.

Martínez-Corral, M.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19, 046022 (2014).
[Crossref]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A. 28, 1410–1417 (2011).
[Crossref]

Memmolo, P.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

Merola, F.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

Miao, J.

Miccio, L.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[Crossref]

Min, J.

J. Min, B. Yao, P. Gao, B. Ma, S. Yan, F. Peng, J. Zheng, T. Ye, and R. Rupp, “Wave-front curvature compensation of polarization phase-shifting digital holography,” Optik 123, 1525–1529 (2012).
[Crossref]

Mizuno, J.

Monnom, O.

Moon, I.

Müthing, J.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15, 036009 (2010).
[Crossref]

Nehmetallah, G.

Nguyen, T.

Nicola, S. D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[Crossref]

Ohta, S.

Pagliarulo, V.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

Pan, F.

S. Liu, W. Xiao, and F. Pan, “Automatic compensation of phase aberrations in digital holographic microscopy for living cells investigation by using spectral energy analysis,” Opt. Laser Technol. 57, 169–174 (2014).
[Crossref]

F. Pan, W. Xiao, S. Liu, and L. Rong, “Application of three-dimensional spatial correlation properties of coherent noise in phase noise suppression for digital holographic microscopy,” Opt. Laser Technol. 51, 67–71 (2013).
[Crossref]

Paturzo, M.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

Peng, F.

J. Min, B. Yao, P. Gao, B. Ma, S. Yan, F. Peng, J. Zheng, T. Ye, and R. Rupp, “Wave-front curvature compensation of polarization phase-shifting digital holography,” Optik 123, 1525–1529 (2012).
[Crossref]

Peng, X.

Pierattini, G.

Qu, W.

Rao, D. V. G. L. N.

Rappaz, B.

Raub, C. B.

Rong, L.

F. Pan, W. Xiao, S. Liu, and L. Rong, “Application of three-dimensional spatial correlation properties of coherent noise in phase noise suppression for digital holographic microscopy,” Opt. Laser Technol. 51, 67–71 (2013).
[Crossref]

Rupp, R.

J. Min, B. Yao, P. Gao, B. Ma, S. Yan, F. Peng, J. Zheng, T. Ye, and R. Rupp, “Wave-front curvature compensation of polarization phase-shifting digital holography,” Optik 123, 1525–1529 (2012).
[Crossref]

Saavedra, G.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19, 046022 (2014).
[Crossref]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A. 28, 1410–1417 (2011).
[Crossref]

Sánchez-Ortiga, E.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19, 046022 (2014).
[Crossref]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A. 28, 1410–1417 (2011).
[Crossref]

Schäfer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Schnekenburger, J.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Sun, J.

Sun, W.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282, 3873–3877 (2009).
[Crossref]

Tessier, G.

Vollmer, A.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15, 036009 (2010).
[Crossref]

von Bally, G.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15, 036009 (2010).
[Crossref]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Wang, D.

H. Cui, D. Wang, Y. Wang, J. Zhao, and Y. Zhang, “Phase aberration compensation by spectrum centering in digital holographic microscopy,” Opt. Commun. 284, 4152–4155 (2011).
[Crossref]

Wang, Y.

H. Cui, D. Wang, Y. Wang, J. Zhao, and Y. Zhang, “Phase aberration compensation by spectrum centering in digital holographic microscopy,” Opt. Commun. 284, 4152–4155 (2011).
[Crossref]

Warnasooriya, N.

Weijuan, Q.

Q. Weijuan, Y. Yingjie, Z. Wenjing, Y. Hao, and A. Asundi, “Phase measurement via in-line digital holographic microscopy,” Proc. SPIE 7155, 71550R (2008).
[Crossref]

Wenjing, Z.

Q. Weijuan, Y. Yingjie, Z. Wenjing, Y. Hao, and A. Asundi, “Phase measurement via in-line digital holographic microscopy,” Proc. SPIE 7155, 71550R (2008).
[Crossref]

Xiao, W.

S. Liu, W. Xiao, and F. Pan, “Automatic compensation of phase aberrations in digital holographic microscopy for living cells investigation by using spectral energy analysis,” Opt. Laser Technol. 57, 169–174 (2014).
[Crossref]

F. Pan, W. Xiao, S. Liu, and L. Rong, “Application of three-dimensional spatial correlation properties of coherent noise in phase noise suppression for digital holographic microscopy,” Opt. Laser Technol. 51, 67–71 (2013).
[Crossref]

Xu, L.

Xu, W.

Yamaguchi, I.

Yan, S.

J. Min, B. Yao, P. Gao, B. Ma, S. Yan, F. Peng, J. Zheng, T. Ye, and R. Rupp, “Wave-front curvature compensation of polarization phase-shifting digital holography,” Optik 123, 1525–1529 (2012).
[Crossref]

Yan, X.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282, 3873–3877 (2009).
[Crossref]

Yao, B.

J. Min, B. Yao, P. Gao, B. Ma, S. Yan, F. Peng, J. Zheng, T. Ye, and R. Rupp, “Wave-front curvature compensation of polarization phase-shifting digital holography,” Optik 123, 1525–1529 (2012).
[Crossref]

Ye, T.

J. Min, B. Yao, P. Gao, B. Ma, S. Yan, F. Peng, J. Zheng, T. Ye, and R. Rupp, “Wave-front curvature compensation of polarization phase-shifting digital holography,” Optik 123, 1525–1529 (2012).
[Crossref]

Yelleswarapu, C. S.

Yeom, S.

Yingjie, Y.

Q. Weijuan, Y. Yingjie, Z. Wenjing, Y. Hao, and A. Asundi, “Phase measurement via in-line digital holographic microscopy,” Proc. SPIE 7155, 71550R (2008).
[Crossref]

Yourassowsky, C.

Yu, L.

Zhang, Y.

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Optimal principal component analysis-based numerical phase aberration compensation method for digital holography,” Opt. Lett. 41, 1293–1296 (2016).
[Crossref]

H. Cui, D. Wang, Y. Wang, J. Zhao, and Y. Zhang, “Phase aberration compensation by spectrum centering in digital holographic microscopy,” Opt. Commun. 284, 4152–4155 (2011).
[Crossref]

Zhao, J.

H. Cui, D. Wang, Y. Wang, J. Zhao, and Y. Zhang, “Phase aberration compensation by spectrum centering in digital holographic microscopy,” Opt. Commun. 284, 4152–4155 (2011).
[Crossref]

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282, 3873–3877 (2009).
[Crossref]

Zheng, J.

J. Min, B. Yao, P. Gao, B. Ma, S. Yan, F. Peng, J. Zheng, T. Ye, and R. Rupp, “Wave-front curvature compensation of polarization phase-shifting digital holography,” Optik 123, 1525–1529 (2012).
[Crossref]

Zuo, C.

Appl. Opt. (9)

L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046–5051 (2001).
[Crossref]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
[Crossref]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[Crossref]

B. Das, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Quantitative phase microscopy using dual-plane in-line digital holography,” Appl. Opt. 51, 1387–1395 (2012).
[Crossref]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[Crossref]

I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001).
[Crossref]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[Crossref]

O. Monnom, F. Dubois, C. Yourassowsky, and J. C. Legros, “Improvement in visibility of an in-focus reconstructed image in digital holography by reduction of the influence of out-of-focus objects,” Appl. Opt. 44, 3827–3832 (2005).
[Crossref]

Appl. Phys. Lett. (1)

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
[Crossref]

Chin. Opt. Lett. (1)

J. Biomed. Opt. (3)

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19, 046022 (2014).
[Crossref]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15, 036009 (2010).
[Crossref]

J. Opt. Soc. Am. A. (1)

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A. 28, 1410–1417 (2011).
[Crossref]

Opt. Commun. (2)

H. Cui, D. Wang, Y. Wang, J. Zhao, and Y. Zhang, “Phase aberration compensation by spectrum centering in digital holographic microscopy,” Opt. Commun. 284, 4152–4155 (2011).
[Crossref]

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282, 3873–3877 (2009).
[Crossref]

Opt. Express (5)

Opt. Laser Eng. (1)

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

Opt. Laser Technol. (2)

F. Pan, W. Xiao, S. Liu, and L. Rong, “Application of three-dimensional spatial correlation properties of coherent noise in phase noise suppression for digital holographic microscopy,” Opt. Laser Technol. 51, 67–71 (2013).
[Crossref]

S. Liu, W. Xiao, and F. Pan, “Automatic compensation of phase aberrations in digital holographic microscopy for living cells investigation by using spectral energy analysis,” Opt. Laser Technol. 57, 169–174 (2014).
[Crossref]

Opt. Lett. (5)

Optik (1)

J. Min, B. Yao, P. Gao, B. Ma, S. Yan, F. Peng, J. Zheng, T. Ye, and R. Rupp, “Wave-front curvature compensation of polarization phase-shifting digital holography,” Optik 123, 1525–1529 (2012).
[Crossref]

Proc. SPIE (2)

G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, M. Iodice, C. Magro, and G. Pierattini, “Characterization of MEMS structures by microscopic digital holography,” Proc. SPIE 4945, 71–78 (2003).
[Crossref]

Q. Weijuan, Y. Yingjie, Z. Wenjing, Y. Hao, and A. Asundi, “Phase measurement via in-line digital holographic microscopy,” Proc. SPIE 7155, 71550R (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Transmission recording setup; (b) reflection recording setup. NF, neutral-density filter; BE, beam expander; M,M1,M2, mirrors; BS,BS1,BS2, beam splitters; PZT, piezoelectric translator; MO, microscope objective; S, specimen; CCD, charge-coupled device.
Fig. 2.
Fig. 2. Block diagram for phase curvature compensation with the proposed method.
Fig. 3.
Fig. 3. (a) Simulated phase map. (b) Simulated wrapped phase map with phase aberrations and noise (the red rectangular area is the location selected during the fitting and optimization process). (c) Phase map after compensation with the fitting values. (d) Phase map after compensation with the optimization values. (e) First principal component of (b). (f) Phase map after compensation with the PCA method. (g) Energy spectrum after compensation with the fitting values. (h) Energy spectrum after compensation with the optimization values. (i) Line profiles of the phase after compensation with different methods.
Fig. 4.
Fig. 4. (a) Hologram of the specimen. (b) Phase map of the specimen. (c) Shear phase map. (d) First principal component of (b). (e) Phase map after compensation with the proposed method. (f) Phase map after compensation with the PCA method.
Fig. 5.
Fig. 5. (a) Hologram of the specimen. (b) Phase map of the specimen (the red rectangular area is the location selected during the fitting and optimization process). (c) Phase map after compensation with the proposed method. (d) Phase map after compensation with the PCA method.

Tables (2)

Tables Icon

Table 1. Fitting and Optimization Values at Different SNRs

Tables Icon

Table 2. RMSE of the Compensated Phases Using Different Methods

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

φ ( x , y ) = φ o ( x , y ) + φ a ( x , y ) ,
φ a ( x , y ) = a x 2 + b y 2 ,
φ m ( x , y ) = a x 2 + b y 2 .
φ g ( x , y ) = φ ( x + 1 , y + 1 ) φ ( x , y ) .
φ g ( x , y ) = φ o ( x + 1 , y + 1 ) φ o ( x , y ) + 2 a x + 2 b y + c ,
F = x = M / 2 M / 2 1 y = N / 2 N / 2 1 1 1 + x 2 + y 2 | D F T { exp [ ψ ( x , y ) ] } | 2 ,
ψ ( x , y ) = φ ( x , y ) φ m ( x , y ) ,
( a , b ) = arg max F ( a , b ) .

Metrics