Abstract

The Laser MégaJoule (LMJ) is a high-power laser dedicated to laser-plasma experiments. At the beginning of the project in the mid-1990s, an optical metrology laboratory was created at CEA to help accomplish all the steps in the construction of this laser. This paper proposes an overview of the capabilities of this metrology laboratory in four main fields: surface imperfections, photometry, laser damage measurement, and wavefront measurement. The specificities for high-power laser optics in each domain are highlighted as well as the specific features that make our instruments unique.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities

Jérôme Néauport, Eric Journot, Gaël Gaborit, and Philippe Bouchut
Appl. Opt. 44(16) 3143-3152 (2005)

Design and optical characterization of a large continuous phase plate for Laser Integration Line and laser Megajoule facilities

Jérôme Néauport, Xavier Ribeyre, Jérôme Daurios, Denis Valla, Martine Lavergne, Vincent Beau, and Laurent Videau
Appl. Opt. 42(13) 2377-2382 (2003)

FM-to-AM conversion in high-power lasers

Steve Hocquet, Denis Penninckx, Edouard Bordenave, Claude Gouédard, and Yves Jaouën
Appl. Opt. 47(18) 3338-3349 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. Nicolaizeau and J.-L. Miquel, “LMJ status: fifth bundle commissioning and PW class laser coupling,” Proc. SPIE 10898, 1089802 (2019).
    [Crossref]
  2. “Preparation of drawing for optical elements and systems. Part 7: Surface imperfect1ion tolerances,” (2017).
  3. R. Prasad, M. Bernacil, J. Halpin, J. Peterson, S. Mills, and R. Hackel, “Design of an illumination technique to improve the identification of surface flaws on optics,” Proc. SPIE 5647, 421–426 (2004).
    [Crossref]
  4. F. Tournemenne, S. Bouillet, C. Rouyer, B. Da Costa Fernandes, G. Gaborit, C. Leymarie, and B. Battelier, “Visual defects diffraction in high power lasers: impact on downstream optics,” Proc. SPIE 10447, 104471Y (2017).
    [Crossref]
  5. F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, B. Da Costa Fernandes, G. Gaborit, B. Battelier, and N. Bonod, “Strong light intensifications yielded by arbitrary defects: Fresnel diffraction theory applied to a set of opaque disks,” Phys. Rev. Appl. 11, 034008 (2019).
    [Crossref]
  6. F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, A. Baudier, and B. Battelier, “A change of paradigm for visual defects specification in high power lasers,” Proc. SPIE 10898, 1089805 (2019).
    [Crossref]
  7. G. Gaborit, E. Lavastre, I. Lebeaux, and J.-C. Poncetta, “Specific photometer for large coated optics,” Proc. SPIE 5878, 58781A (2005).
    [Crossref]
  8. J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for laser integration line and laser megajoule facilities,” Appl. Opt. 44, 3143–3152 (2005).
    [Crossref]
  9. D. Ristau, Laser-Induced Damage in Optical Materials (CRC Press/Taylor & Francis Group, 2015).
  10. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
    [Crossref]
  11. Lasers and laser-related equipment — Test methods for laser-induced damage threshold — Part 1: Definitions and general principles,” (2011).
  12. Lasers and laser-related equipment — Test methods for laser-induced damage threshold — Part 4: Inspection, detection and measurement,” (2011).
  13. S. Reyné, G. Duchateau, J.-Y. Natoli, and L. Lamaignère, “Competition between ultraviolet and infrared nanosecond laser pulses during the optical breakdown of KH2PO4 crystals,” Appl. Phys. B 109, 695–706 (2012).
    [Crossref]
  14. S. Reyné, G. Duchateau, L. Hallo, J. Y. Natoli, and L. Lamaignère, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys. A 119, 1317–1326 (2015).
    [Crossref]
  15. M. Chambonneau and L. Lamaignère, “Multi-wavelength growth of nanosecond laser-induced surface damage on fused silica gratings,” Sci. Rep. 8, 891 (2018).
    [Crossref]
  16. M. Veinhard, O. Bonville, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Quantification of laser-induced damage growth using fractal analysis,” Opt. Lett. 42, 5078–5081 (2017).
    [Crossref]
  17. L. Lamaignère, K. Gaudfrin, T. Donval, J. Y. Natoli, J. M. Sajer, D. Penninckx, R. Courchinoux, and R. Diaz, “Laser-induced damage of fused silica optics at 355 nm due to backward stimulated Brillouin scattering: experimental and theoretical results,” Opt. Express 26, 11744–11755 (2018).
    [Crossref]
  18. M. Veinhard, O. Bonville, S. Bouillet, E. Bordenave, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Effect of non-linear amplification of phase and amplitude modulations on laser-induced damage of thick fused silica optics with large beams at 351 nm,” J. Appl. Phys. 124, 163106 (2018).
    [Crossref]
  19. D. Penninckx, J. Luce, R. Diaz, O. Bonville, R. Courchinoux, and L. Lamaignère, “Multiple-frequency injection-seeded nanosecond pulsed laser without parasitic intensity modulation,” Opt. Lett. 41, 3237–3240 (2016).
    [Crossref]
  20. M. Sozet, J. Néauport, E. Lavastre, N. Roquin, L. Gallais, and L. Lamaignère, “Laser damage density measurement of optical components in the sub-picosecond regime,” Opt. Lett. 40, 2091–2094 (2015).
    [Crossref]
  21. A. Liard, M. Bray, and G. Chabassier, “Laser megajoule optics (II): wavefront analysis in the testing of large components,” Proc. SPIE 3739, 328–344 (1999).
    [Crossref]
  22. C. Morin and S. Bouillet, “Absolute calibration of three reference flats based on an iterative algorithm: study and implementation,” Proc. SPIE 8169, 816915 (2011).
    [Crossref]
  23. S. Bouillet and J. Daurios, “Using phase objects to qualify the transfer function of Fizeau interferometers for high spatial frequencies,” Proc. SPIE 6616, 661628 (2007).
    [Crossref]
  24. S. Bouillet, S. Chico, L. Le Deroff, G. Razé, and R. Courchinoux, “Measuring a laser focal spot on a large intensity range– effect of optical component laser damages on the focal spot,” Proc. SPIE 7405, 74050W (2009).
    [Crossref]
  25. F. Audo, S. Bouillet, S. Chico, and J. Daurios, “Intermediate field measurement to characterize the wavefront of high power laser large optics,” Proc. SPIE 9205, 92050S (2014).
    [Crossref]
  26. S. Bouillet, F. Audo, S. Fréville, L. Eupherte, C. Rouyer, and J. Daurios, “Optical diffraction interpretation: an alternative to interferometers,” Proc. SPIE 9575, 95751A (2015).
    [Crossref]
  27. N. Blanchot, G. Béhar, J. C. Chapuis, C. Chappuis, S. Chardavoine, J. F. Charrier, H. Coïc, C. Damiens-Dupont, J. Duthu, P. Garcia, J. P. Goossens, F. Granet, C. Grosset-Grange, P. Guerin, B. Hebrard, L. Hilsz, L. Lamaignère, T. Lacombe, E. Lavastre, T. Longhi, J. Luce, F. Macias, M. Mangeant, E. Mazataud, B. Minou, T. Morgaint, S. Noailles, J. Néauport, P. Patelli, E. Perrot-Minnot, C. Present, B. Remy, C. Rouyer, N. Santacreu, M. Sozet, D. Valla, and F. Laniesse, “1.15 PW-850  J compressed beam demonstration using the PETAL facility,” Opt. Express 25, 16957–16970 (2017).
    [Crossref]

2019 (3)

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, B. Da Costa Fernandes, G. Gaborit, B. Battelier, and N. Bonod, “Strong light intensifications yielded by arbitrary defects: Fresnel diffraction theory applied to a set of opaque disks,” Phys. Rev. Appl. 11, 034008 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, A. Baudier, and B. Battelier, “A change of paradigm for visual defects specification in high power lasers,” Proc. SPIE 10898, 1089805 (2019).
[Crossref]

M. Nicolaizeau and J.-L. Miquel, “LMJ status: fifth bundle commissioning and PW class laser coupling,” Proc. SPIE 10898, 1089802 (2019).
[Crossref]

2018 (3)

M. Chambonneau and L. Lamaignère, “Multi-wavelength growth of nanosecond laser-induced surface damage on fused silica gratings,” Sci. Rep. 8, 891 (2018).
[Crossref]

L. Lamaignère, K. Gaudfrin, T. Donval, J. Y. Natoli, J. M. Sajer, D. Penninckx, R. Courchinoux, and R. Diaz, “Laser-induced damage of fused silica optics at 355 nm due to backward stimulated Brillouin scattering: experimental and theoretical results,” Opt. Express 26, 11744–11755 (2018).
[Crossref]

M. Veinhard, O. Bonville, S. Bouillet, E. Bordenave, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Effect of non-linear amplification of phase and amplitude modulations on laser-induced damage of thick fused silica optics with large beams at 351 nm,” J. Appl. Phys. 124, 163106 (2018).
[Crossref]

2017 (3)

2016 (1)

2015 (3)

M. Sozet, J. Néauport, E. Lavastre, N. Roquin, L. Gallais, and L. Lamaignère, “Laser damage density measurement of optical components in the sub-picosecond regime,” Opt. Lett. 40, 2091–2094 (2015).
[Crossref]

S. Reyné, G. Duchateau, L. Hallo, J. Y. Natoli, and L. Lamaignère, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys. A 119, 1317–1326 (2015).
[Crossref]

S. Bouillet, F. Audo, S. Fréville, L. Eupherte, C. Rouyer, and J. Daurios, “Optical diffraction interpretation: an alternative to interferometers,” Proc. SPIE 9575, 95751A (2015).
[Crossref]

2014 (1)

F. Audo, S. Bouillet, S. Chico, and J. Daurios, “Intermediate field measurement to characterize the wavefront of high power laser large optics,” Proc. SPIE 9205, 92050S (2014).
[Crossref]

2012 (1)

S. Reyné, G. Duchateau, J.-Y. Natoli, and L. Lamaignère, “Competition between ultraviolet and infrared nanosecond laser pulses during the optical breakdown of KH2PO4 crystals,” Appl. Phys. B 109, 695–706 (2012).
[Crossref]

2011 (1)

C. Morin and S. Bouillet, “Absolute calibration of three reference flats based on an iterative algorithm: study and implementation,” Proc. SPIE 8169, 816915 (2011).
[Crossref]

2009 (1)

S. Bouillet, S. Chico, L. Le Deroff, G. Razé, and R. Courchinoux, “Measuring a laser focal spot on a large intensity range– effect of optical component laser damages on the focal spot,” Proc. SPIE 7405, 74050W (2009).
[Crossref]

2007 (2)

S. Bouillet and J. Daurios, “Using phase objects to qualify the transfer function of Fizeau interferometers for high spatial frequencies,” Proc. SPIE 6616, 661628 (2007).
[Crossref]

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[Crossref]

2005 (2)

2004 (1)

R. Prasad, M. Bernacil, J. Halpin, J. Peterson, S. Mills, and R. Hackel, “Design of an illumination technique to improve the identification of surface flaws on optics,” Proc. SPIE 5647, 421–426 (2004).
[Crossref]

1999 (1)

A. Liard, M. Bray, and G. Chabassier, “Laser megajoule optics (II): wavefront analysis in the testing of large components,” Proc. SPIE 3739, 328–344 (1999).
[Crossref]

Audo, F.

S. Bouillet, F. Audo, S. Fréville, L. Eupherte, C. Rouyer, and J. Daurios, “Optical diffraction interpretation: an alternative to interferometers,” Proc. SPIE 9575, 95751A (2015).
[Crossref]

F. Audo, S. Bouillet, S. Chico, and J. Daurios, “Intermediate field measurement to characterize the wavefront of high power laser large optics,” Proc. SPIE 9205, 92050S (2014).
[Crossref]

Battelier, B.

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, B. Da Costa Fernandes, G. Gaborit, B. Battelier, and N. Bonod, “Strong light intensifications yielded by arbitrary defects: Fresnel diffraction theory applied to a set of opaque disks,” Phys. Rev. Appl. 11, 034008 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, A. Baudier, and B. Battelier, “A change of paradigm for visual defects specification in high power lasers,” Proc. SPIE 10898, 1089805 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, B. Da Costa Fernandes, G. Gaborit, C. Leymarie, and B. Battelier, “Visual defects diffraction in high power lasers: impact on downstream optics,” Proc. SPIE 10447, 104471Y (2017).
[Crossref]

Baudier, A.

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, A. Baudier, and B. Battelier, “A change of paradigm for visual defects specification in high power lasers,” Proc. SPIE 10898, 1089805 (2019).
[Crossref]

Béhar, G.

Bercegol, H.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[Crossref]

Bernacil, M.

R. Prasad, M. Bernacil, J. Halpin, J. Peterson, S. Mills, and R. Hackel, “Design of an illumination technique to improve the identification of surface flaws on optics,” Proc. SPIE 5647, 421–426 (2004).
[Crossref]

Blanchot, N.

Bonod, N.

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, B. Da Costa Fernandes, G. Gaborit, B. Battelier, and N. Bonod, “Strong light intensifications yielded by arbitrary defects: Fresnel diffraction theory applied to a set of opaque disks,” Phys. Rev. Appl. 11, 034008 (2019).
[Crossref]

Bonville, O.

M. Veinhard, O. Bonville, S. Bouillet, E. Bordenave, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Effect of non-linear amplification of phase and amplitude modulations on laser-induced damage of thick fused silica optics with large beams at 351 nm,” J. Appl. Phys. 124, 163106 (2018).
[Crossref]

M. Veinhard, O. Bonville, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Quantification of laser-induced damage growth using fractal analysis,” Opt. Lett. 42, 5078–5081 (2017).
[Crossref]

D. Penninckx, J. Luce, R. Diaz, O. Bonville, R. Courchinoux, and L. Lamaignère, “Multiple-frequency injection-seeded nanosecond pulsed laser without parasitic intensity modulation,” Opt. Lett. 41, 3237–3240 (2016).
[Crossref]

Bordenave, E.

M. Veinhard, O. Bonville, S. Bouillet, E. Bordenave, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Effect of non-linear amplification of phase and amplitude modulations on laser-induced damage of thick fused silica optics with large beams at 351 nm,” J. Appl. Phys. 124, 163106 (2018).
[Crossref]

Bouchut, P.

Bouillet, S.

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, A. Baudier, and B. Battelier, “A change of paradigm for visual defects specification in high power lasers,” Proc. SPIE 10898, 1089805 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, B. Da Costa Fernandes, G. Gaborit, B. Battelier, and N. Bonod, “Strong light intensifications yielded by arbitrary defects: Fresnel diffraction theory applied to a set of opaque disks,” Phys. Rev. Appl. 11, 034008 (2019).
[Crossref]

M. Veinhard, O. Bonville, S. Bouillet, E. Bordenave, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Effect of non-linear amplification of phase and amplitude modulations on laser-induced damage of thick fused silica optics with large beams at 351 nm,” J. Appl. Phys. 124, 163106 (2018).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, B. Da Costa Fernandes, G. Gaborit, C. Leymarie, and B. Battelier, “Visual defects diffraction in high power lasers: impact on downstream optics,” Proc. SPIE 10447, 104471Y (2017).
[Crossref]

S. Bouillet, F. Audo, S. Fréville, L. Eupherte, C. Rouyer, and J. Daurios, “Optical diffraction interpretation: an alternative to interferometers,” Proc. SPIE 9575, 95751A (2015).
[Crossref]

F. Audo, S. Bouillet, S. Chico, and J. Daurios, “Intermediate field measurement to characterize the wavefront of high power laser large optics,” Proc. SPIE 9205, 92050S (2014).
[Crossref]

C. Morin and S. Bouillet, “Absolute calibration of three reference flats based on an iterative algorithm: study and implementation,” Proc. SPIE 8169, 816915 (2011).
[Crossref]

S. Bouillet, S. Chico, L. Le Deroff, G. Razé, and R. Courchinoux, “Measuring a laser focal spot on a large intensity range– effect of optical component laser damages on the focal spot,” Proc. SPIE 7405, 74050W (2009).
[Crossref]

S. Bouillet and J. Daurios, “Using phase objects to qualify the transfer function of Fizeau interferometers for high spatial frequencies,” Proc. SPIE 6616, 661628 (2007).
[Crossref]

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[Crossref]

Bray, M.

A. Liard, M. Bray, and G. Chabassier, “Laser megajoule optics (II): wavefront analysis in the testing of large components,” Proc. SPIE 3739, 328–344 (1999).
[Crossref]

Chabassier, G.

A. Liard, M. Bray, and G. Chabassier, “Laser megajoule optics (II): wavefront analysis in the testing of large components,” Proc. SPIE 3739, 328–344 (1999).
[Crossref]

Chambonneau, M.

M. Chambonneau and L. Lamaignère, “Multi-wavelength growth of nanosecond laser-induced surface damage on fused silica gratings,” Sci. Rep. 8, 891 (2018).
[Crossref]

Chappuis, C.

Chapuis, J. C.

Chardavoine, S.

Charrier, J. F.

Chico, S.

F. Audo, S. Bouillet, S. Chico, and J. Daurios, “Intermediate field measurement to characterize the wavefront of high power laser large optics,” Proc. SPIE 9205, 92050S (2014).
[Crossref]

S. Bouillet, S. Chico, L. Le Deroff, G. Razé, and R. Courchinoux, “Measuring a laser focal spot on a large intensity range– effect of optical component laser damages on the focal spot,” Proc. SPIE 7405, 74050W (2009).
[Crossref]

Coïc, H.

Courchinoux, R.

M. Veinhard, O. Bonville, S. Bouillet, E. Bordenave, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Effect of non-linear amplification of phase and amplitude modulations on laser-induced damage of thick fused silica optics with large beams at 351 nm,” J. Appl. Phys. 124, 163106 (2018).
[Crossref]

L. Lamaignère, K. Gaudfrin, T. Donval, J. Y. Natoli, J. M. Sajer, D. Penninckx, R. Courchinoux, and R. Diaz, “Laser-induced damage of fused silica optics at 355 nm due to backward stimulated Brillouin scattering: experimental and theoretical results,” Opt. Express 26, 11744–11755 (2018).
[Crossref]

M. Veinhard, O. Bonville, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Quantification of laser-induced damage growth using fractal analysis,” Opt. Lett. 42, 5078–5081 (2017).
[Crossref]

D. Penninckx, J. Luce, R. Diaz, O. Bonville, R. Courchinoux, and L. Lamaignère, “Multiple-frequency injection-seeded nanosecond pulsed laser without parasitic intensity modulation,” Opt. Lett. 41, 3237–3240 (2016).
[Crossref]

S. Bouillet, S. Chico, L. Le Deroff, G. Razé, and R. Courchinoux, “Measuring a laser focal spot on a large intensity range– effect of optical component laser damages on the focal spot,” Proc. SPIE 7405, 74050W (2009).
[Crossref]

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[Crossref]

Da Costa Fernandes, B.

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, B. Da Costa Fernandes, G. Gaborit, B. Battelier, and N. Bonod, “Strong light intensifications yielded by arbitrary defects: Fresnel diffraction theory applied to a set of opaque disks,” Phys. Rev. Appl. 11, 034008 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, B. Da Costa Fernandes, G. Gaborit, C. Leymarie, and B. Battelier, “Visual defects diffraction in high power lasers: impact on downstream optics,” Proc. SPIE 10447, 104471Y (2017).
[Crossref]

Damiens-Dupont, C.

Daurios, J.

S. Bouillet, F. Audo, S. Fréville, L. Eupherte, C. Rouyer, and J. Daurios, “Optical diffraction interpretation: an alternative to interferometers,” Proc. SPIE 9575, 95751A (2015).
[Crossref]

F. Audo, S. Bouillet, S. Chico, and J. Daurios, “Intermediate field measurement to characterize the wavefront of high power laser large optics,” Proc. SPIE 9205, 92050S (2014).
[Crossref]

S. Bouillet and J. Daurios, “Using phase objects to qualify the transfer function of Fizeau interferometers for high spatial frequencies,” Proc. SPIE 6616, 661628 (2007).
[Crossref]

Diaz, R.

Donval, T.

L. Lamaignère, K. Gaudfrin, T. Donval, J. Y. Natoli, J. M. Sajer, D. Penninckx, R. Courchinoux, and R. Diaz, “Laser-induced damage of fused silica optics at 355 nm due to backward stimulated Brillouin scattering: experimental and theoretical results,” Opt. Express 26, 11744–11755 (2018).
[Crossref]

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[Crossref]

Duchateau, G.

S. Reyné, G. Duchateau, L. Hallo, J. Y. Natoli, and L. Lamaignère, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys. A 119, 1317–1326 (2015).
[Crossref]

S. Reyné, G. Duchateau, J.-Y. Natoli, and L. Lamaignère, “Competition between ultraviolet and infrared nanosecond laser pulses during the optical breakdown of KH2PO4 crystals,” Appl. Phys. B 109, 695–706 (2012).
[Crossref]

Duthu, J.

Eupherte, L.

S. Bouillet, F. Audo, S. Fréville, L. Eupherte, C. Rouyer, and J. Daurios, “Optical diffraction interpretation: an alternative to interferometers,” Proc. SPIE 9575, 95751A (2015).
[Crossref]

Fréville, S.

S. Bouillet, F. Audo, S. Fréville, L. Eupherte, C. Rouyer, and J. Daurios, “Optical diffraction interpretation: an alternative to interferometers,” Proc. SPIE 9575, 95751A (2015).
[Crossref]

Gaborit, G.

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, B. Da Costa Fernandes, G. Gaborit, B. Battelier, and N. Bonod, “Strong light intensifications yielded by arbitrary defects: Fresnel diffraction theory applied to a set of opaque disks,” Phys. Rev. Appl. 11, 034008 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, B. Da Costa Fernandes, G. Gaborit, C. Leymarie, and B. Battelier, “Visual defects diffraction in high power lasers: impact on downstream optics,” Proc. SPIE 10447, 104471Y (2017).
[Crossref]

G. Gaborit, E. Lavastre, I. Lebeaux, and J.-C. Poncetta, “Specific photometer for large coated optics,” Proc. SPIE 5878, 58781A (2005).
[Crossref]

J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for laser integration line and laser megajoule facilities,” Appl. Opt. 44, 3143–3152 (2005).
[Crossref]

Gallais, L.

Garcia, P.

Gaudfrin, K.

Goossens, J. P.

Granet, F.

Grosset-Grange, C.

Guerin, P.

Hackel, R.

R. Prasad, M. Bernacil, J. Halpin, J. Peterson, S. Mills, and R. Hackel, “Design of an illumination technique to improve the identification of surface flaws on optics,” Proc. SPIE 5647, 421–426 (2004).
[Crossref]

Hallo, L.

S. Reyné, G. Duchateau, L. Hallo, J. Y. Natoli, and L. Lamaignère, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys. A 119, 1317–1326 (2015).
[Crossref]

Halpin, J.

R. Prasad, M. Bernacil, J. Halpin, J. Peterson, S. Mills, and R. Hackel, “Design of an illumination technique to improve the identification of surface flaws on optics,” Proc. SPIE 5647, 421–426 (2004).
[Crossref]

Hebrard, B.

Hilsz, L.

Iriondo, J.

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, A. Baudier, and B. Battelier, “A change of paradigm for visual defects specification in high power lasers,” Proc. SPIE 10898, 1089805 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, B. Da Costa Fernandes, G. Gaborit, B. Battelier, and N. Bonod, “Strong light intensifications yielded by arbitrary defects: Fresnel diffraction theory applied to a set of opaque disks,” Phys. Rev. Appl. 11, 034008 (2019).
[Crossref]

Josse, M.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[Crossref]

Journot, E.

Lacombe, T.

Lamaignère, L.

L. Lamaignère, K. Gaudfrin, T. Donval, J. Y. Natoli, J. M. Sajer, D. Penninckx, R. Courchinoux, and R. Diaz, “Laser-induced damage of fused silica optics at 355 nm due to backward stimulated Brillouin scattering: experimental and theoretical results,” Opt. Express 26, 11744–11755 (2018).
[Crossref]

M. Veinhard, O. Bonville, S. Bouillet, E. Bordenave, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Effect of non-linear amplification of phase and amplitude modulations on laser-induced damage of thick fused silica optics with large beams at 351 nm,” J. Appl. Phys. 124, 163106 (2018).
[Crossref]

M. Chambonneau and L. Lamaignère, “Multi-wavelength growth of nanosecond laser-induced surface damage on fused silica gratings,” Sci. Rep. 8, 891 (2018).
[Crossref]

N. Blanchot, G. Béhar, J. C. Chapuis, C. Chappuis, S. Chardavoine, J. F. Charrier, H. Coïc, C. Damiens-Dupont, J. Duthu, P. Garcia, J. P. Goossens, F. Granet, C. Grosset-Grange, P. Guerin, B. Hebrard, L. Hilsz, L. Lamaignère, T. Lacombe, E. Lavastre, T. Longhi, J. Luce, F. Macias, M. Mangeant, E. Mazataud, B. Minou, T. Morgaint, S. Noailles, J. Néauport, P. Patelli, E. Perrot-Minnot, C. Present, B. Remy, C. Rouyer, N. Santacreu, M. Sozet, D. Valla, and F. Laniesse, “1.15 PW-850  J compressed beam demonstration using the PETAL facility,” Opt. Express 25, 16957–16970 (2017).
[Crossref]

M. Veinhard, O. Bonville, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Quantification of laser-induced damage growth using fractal analysis,” Opt. Lett. 42, 5078–5081 (2017).
[Crossref]

D. Penninckx, J. Luce, R. Diaz, O. Bonville, R. Courchinoux, and L. Lamaignère, “Multiple-frequency injection-seeded nanosecond pulsed laser without parasitic intensity modulation,” Opt. Lett. 41, 3237–3240 (2016).
[Crossref]

M. Sozet, J. Néauport, E. Lavastre, N. Roquin, L. Gallais, and L. Lamaignère, “Laser damage density measurement of optical components in the sub-picosecond regime,” Opt. Lett. 40, 2091–2094 (2015).
[Crossref]

S. Reyné, G. Duchateau, L. Hallo, J. Y. Natoli, and L. Lamaignère, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys. A 119, 1317–1326 (2015).
[Crossref]

S. Reyné, G. Duchateau, J.-Y. Natoli, and L. Lamaignère, “Competition between ultraviolet and infrared nanosecond laser pulses during the optical breakdown of KH2PO4 crystals,” Appl. Phys. B 109, 695–706 (2012).
[Crossref]

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[Crossref]

Laniesse, F.

Lavastre, E.

Le Deroff, L.

S. Bouillet, S. Chico, L. Le Deroff, G. Razé, and R. Courchinoux, “Measuring a laser focal spot on a large intensity range– effect of optical component laser damages on the focal spot,” Proc. SPIE 7405, 74050W (2009).
[Crossref]

Lebeaux, I.

G. Gaborit, E. Lavastre, I. Lebeaux, and J.-C. Poncetta, “Specific photometer for large coated optics,” Proc. SPIE 5878, 58781A (2005).
[Crossref]

Leymarie, C.

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, A. Baudier, and B. Battelier, “A change of paradigm for visual defects specification in high power lasers,” Proc. SPIE 10898, 1089805 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, B. Da Costa Fernandes, G. Gaborit, B. Battelier, and N. Bonod, “Strong light intensifications yielded by arbitrary defects: Fresnel diffraction theory applied to a set of opaque disks,” Phys. Rev. Appl. 11, 034008 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, B. Da Costa Fernandes, G. Gaborit, C. Leymarie, and B. Battelier, “Visual defects diffraction in high power lasers: impact on downstream optics,” Proc. SPIE 10447, 104471Y (2017).
[Crossref]

Liard, A.

A. Liard, M. Bray, and G. Chabassier, “Laser megajoule optics (II): wavefront analysis in the testing of large components,” Proc. SPIE 3739, 328–344 (1999).
[Crossref]

Longhi, T.

Luce, J.

Macias, F.

Mangeant, M.

Mazataud, E.

Mills, S.

R. Prasad, M. Bernacil, J. Halpin, J. Peterson, S. Mills, and R. Hackel, “Design of an illumination technique to improve the identification of surface flaws on optics,” Proc. SPIE 5647, 421–426 (2004).
[Crossref]

Minou, B.

Miquel, J.-L.

M. Nicolaizeau and J.-L. Miquel, “LMJ status: fifth bundle commissioning and PW class laser coupling,” Proc. SPIE 10898, 1089802 (2019).
[Crossref]

Morgaint, T.

Morin, C.

C. Morin and S. Bouillet, “Absolute calibration of three reference flats based on an iterative algorithm: study and implementation,” Proc. SPIE 8169, 816915 (2011).
[Crossref]

Natoli, J. Y.

Natoli, J.-Y.

M. Veinhard, O. Bonville, S. Bouillet, E. Bordenave, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Effect of non-linear amplification of phase and amplitude modulations on laser-induced damage of thick fused silica optics with large beams at 351 nm,” J. Appl. Phys. 124, 163106 (2018).
[Crossref]

M. Veinhard, O. Bonville, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Quantification of laser-induced damage growth using fractal analysis,” Opt. Lett. 42, 5078–5081 (2017).
[Crossref]

S. Reyné, G. Duchateau, J.-Y. Natoli, and L. Lamaignère, “Competition between ultraviolet and infrared nanosecond laser pulses during the optical breakdown of KH2PO4 crystals,” Appl. Phys. B 109, 695–706 (2012).
[Crossref]

Néauport, J.

Nicolaizeau, M.

M. Nicolaizeau and J.-L. Miquel, “LMJ status: fifth bundle commissioning and PW class laser coupling,” Proc. SPIE 10898, 1089802 (2019).
[Crossref]

Noailles, S.

Parreault, R.

M. Veinhard, O. Bonville, S. Bouillet, E. Bordenave, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Effect of non-linear amplification of phase and amplitude modulations on laser-induced damage of thick fused silica optics with large beams at 351 nm,” J. Appl. Phys. 124, 163106 (2018).
[Crossref]

M. Veinhard, O. Bonville, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Quantification of laser-induced damage growth using fractal analysis,” Opt. Lett. 42, 5078–5081 (2017).
[Crossref]

Patelli, P.

Penninckx, D.

Perrot-Minnot, E.

Peterson, J.

R. Prasad, M. Bernacil, J. Halpin, J. Peterson, S. Mills, and R. Hackel, “Design of an illumination technique to improve the identification of surface flaws on optics,” Proc. SPIE 5647, 421–426 (2004).
[Crossref]

Poncetta, J. C.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[Crossref]

Poncetta, J.-C.

G. Gaborit, E. Lavastre, I. Lebeaux, and J.-C. Poncetta, “Specific photometer for large coated optics,” Proc. SPIE 5878, 58781A (2005).
[Crossref]

Prasad, R.

R. Prasad, M. Bernacil, J. Halpin, J. Peterson, S. Mills, and R. Hackel, “Design of an illumination technique to improve the identification of surface flaws on optics,” Proc. SPIE 5647, 421–426 (2004).
[Crossref]

Present, C.

Razé, G.

S. Bouillet, S. Chico, L. Le Deroff, G. Razé, and R. Courchinoux, “Measuring a laser focal spot on a large intensity range– effect of optical component laser damages on the focal spot,” Proc. SPIE 7405, 74050W (2009).
[Crossref]

Remy, B.

Reyné, S.

S. Reyné, G. Duchateau, L. Hallo, J. Y. Natoli, and L. Lamaignère, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys. A 119, 1317–1326 (2015).
[Crossref]

S. Reyné, G. Duchateau, J.-Y. Natoli, and L. Lamaignère, “Competition between ultraviolet and infrared nanosecond laser pulses during the optical breakdown of KH2PO4 crystals,” Appl. Phys. B 109, 695–706 (2012).
[Crossref]

Ristau, D.

D. Ristau, Laser-Induced Damage in Optical Materials (CRC Press/Taylor & Francis Group, 2015).

Roquin, N.

Rouyer, C.

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, A. Baudier, and B. Battelier, “A change of paradigm for visual defects specification in high power lasers,” Proc. SPIE 10898, 1089805 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, B. Da Costa Fernandes, G. Gaborit, B. Battelier, and N. Bonod, “Strong light intensifications yielded by arbitrary defects: Fresnel diffraction theory applied to a set of opaque disks,” Phys. Rev. Appl. 11, 034008 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, B. Da Costa Fernandes, G. Gaborit, C. Leymarie, and B. Battelier, “Visual defects diffraction in high power lasers: impact on downstream optics,” Proc. SPIE 10447, 104471Y (2017).
[Crossref]

N. Blanchot, G. Béhar, J. C. Chapuis, C. Chappuis, S. Chardavoine, J. F. Charrier, H. Coïc, C. Damiens-Dupont, J. Duthu, P. Garcia, J. P. Goossens, F. Granet, C. Grosset-Grange, P. Guerin, B. Hebrard, L. Hilsz, L. Lamaignère, T. Lacombe, E. Lavastre, T. Longhi, J. Luce, F. Macias, M. Mangeant, E. Mazataud, B. Minou, T. Morgaint, S. Noailles, J. Néauport, P. Patelli, E. Perrot-Minnot, C. Present, B. Remy, C. Rouyer, N. Santacreu, M. Sozet, D. Valla, and F. Laniesse, “1.15 PW-850  J compressed beam demonstration using the PETAL facility,” Opt. Express 25, 16957–16970 (2017).
[Crossref]

S. Bouillet, F. Audo, S. Fréville, L. Eupherte, C. Rouyer, and J. Daurios, “Optical diffraction interpretation: an alternative to interferometers,” Proc. SPIE 9575, 95751A (2015).
[Crossref]

Sajer, J. M.

Santacreu, N.

Sozet, M.

Tournemenne, F.

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, B. Da Costa Fernandes, G. Gaborit, B. Battelier, and N. Bonod, “Strong light intensifications yielded by arbitrary defects: Fresnel diffraction theory applied to a set of opaque disks,” Phys. Rev. Appl. 11, 034008 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, A. Baudier, and B. Battelier, “A change of paradigm for visual defects specification in high power lasers,” Proc. SPIE 10898, 1089805 (2019).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, B. Da Costa Fernandes, G. Gaborit, C. Leymarie, and B. Battelier, “Visual defects diffraction in high power lasers: impact on downstream optics,” Proc. SPIE 10447, 104471Y (2017).
[Crossref]

Valla, D.

Veinhard, M.

M. Veinhard, O. Bonville, S. Bouillet, E. Bordenave, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Effect of non-linear amplification of phase and amplitude modulations on laser-induced damage of thick fused silica optics with large beams at 351 nm,” J. Appl. Phys. 124, 163106 (2018).
[Crossref]

M. Veinhard, O. Bonville, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Quantification of laser-induced damage growth using fractal analysis,” Opt. Lett. 42, 5078–5081 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

S. Reyné, G. Duchateau, L. Hallo, J. Y. Natoli, and L. Lamaignère, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys. A 119, 1317–1326 (2015).
[Crossref]

Appl. Phys. B (1)

S. Reyné, G. Duchateau, J.-Y. Natoli, and L. Lamaignère, “Competition between ultraviolet and infrared nanosecond laser pulses during the optical breakdown of KH2PO4 crystals,” Appl. Phys. B 109, 695–706 (2012).
[Crossref]

J. Appl. Phys. (1)

M. Veinhard, O. Bonville, S. Bouillet, E. Bordenave, R. Courchinoux, R. Parreault, J.-Y. Natoli, and L. Lamaignère, “Effect of non-linear amplification of phase and amplitude modulations on laser-induced damage of thick fused silica optics with large beams at 351 nm,” J. Appl. Phys. 124, 163106 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Appl. (1)

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, B. Da Costa Fernandes, G. Gaborit, B. Battelier, and N. Bonod, “Strong light intensifications yielded by arbitrary defects: Fresnel diffraction theory applied to a set of opaque disks,” Phys. Rev. Appl. 11, 034008 (2019).
[Crossref]

Proc. SPIE (11)

F. Tournemenne, S. Bouillet, C. Rouyer, C. Leymarie, J. Iriondo, A. Baudier, and B. Battelier, “A change of paradigm for visual defects specification in high power lasers,” Proc. SPIE 10898, 1089805 (2019).
[Crossref]

G. Gaborit, E. Lavastre, I. Lebeaux, and J.-C. Poncetta, “Specific photometer for large coated optics,” Proc. SPIE 5878, 58781A (2005).
[Crossref]

M. Nicolaizeau and J.-L. Miquel, “LMJ status: fifth bundle commissioning and PW class laser coupling,” Proc. SPIE 10898, 1089802 (2019).
[Crossref]

R. Prasad, M. Bernacil, J. Halpin, J. Peterson, S. Mills, and R. Hackel, “Design of an illumination technique to improve the identification of surface flaws on optics,” Proc. SPIE 5647, 421–426 (2004).
[Crossref]

F. Tournemenne, S. Bouillet, C. Rouyer, B. Da Costa Fernandes, G. Gaborit, C. Leymarie, and B. Battelier, “Visual defects diffraction in high power lasers: impact on downstream optics,” Proc. SPIE 10447, 104471Y (2017).
[Crossref]

A. Liard, M. Bray, and G. Chabassier, “Laser megajoule optics (II): wavefront analysis in the testing of large components,” Proc. SPIE 3739, 328–344 (1999).
[Crossref]

C. Morin and S. Bouillet, “Absolute calibration of three reference flats based on an iterative algorithm: study and implementation,” Proc. SPIE 8169, 816915 (2011).
[Crossref]

S. Bouillet and J. Daurios, “Using phase objects to qualify the transfer function of Fizeau interferometers for high spatial frequencies,” Proc. SPIE 6616, 661628 (2007).
[Crossref]

S. Bouillet, S. Chico, L. Le Deroff, G. Razé, and R. Courchinoux, “Measuring a laser focal spot on a large intensity range– effect of optical component laser damages on the focal spot,” Proc. SPIE 7405, 74050W (2009).
[Crossref]

F. Audo, S. Bouillet, S. Chico, and J. Daurios, “Intermediate field measurement to characterize the wavefront of high power laser large optics,” Proc. SPIE 9205, 92050S (2014).
[Crossref]

S. Bouillet, F. Audo, S. Fréville, L. Eupherte, C. Rouyer, and J. Daurios, “Optical diffraction interpretation: an alternative to interferometers,” Proc. SPIE 9575, 95751A (2015).
[Crossref]

Rev. Sci. Instrum. (1)

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[Crossref]

Sci. Rep. (1)

M. Chambonneau and L. Lamaignère, “Multi-wavelength growth of nanosecond laser-induced surface damage on fused silica gratings,” Sci. Rep. 8, 891 (2018).
[Crossref]

Other (4)

Lasers and laser-related equipment — Test methods for laser-induced damage threshold — Part 1: Definitions and general principles,” (2011).

Lasers and laser-related equipment — Test methods for laser-induced damage threshold — Part 4: Inspection, detection and measurement,” (2011).

“Preparation of drawing for optical elements and systems. Part 7: Surface imperfect1ion tolerances,” (2017).

D. Ristau, Laser-Induced Damage in Optical Materials (CRC Press/Taylor & Francis Group, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. (a) Surface imperfection inspection bench at THALES SESO. (b) Full field picture of component with edge illumination [(a) front view, (b) rear view]. (c) Characterization with a long-distance microscope.
Fig. 2.
Fig. 2. Defect detection and microscope characterization on a polished optics.
Fig. 3.
Fig. 3. Coating defect inspection bench.
Fig. 4.
Fig. 4. Defect detection and microscope characterization on a coated optics.
Fig. 5.
Fig. 5. Downstream intensification acquisition for a solgel coating defect.
Fig. 6.
Fig. 6. (a) CEA photometer for large coated optics. (b) Controlled hygrometry chamber.
Fig. 7.
Fig. 7. Transmission factor of a polarizer in $p$ - and $s$ -polarization.
Fig. 8.
Fig. 8. Full scale ( ${670}\,\,{\rm mm} \times {410}\,\,{\rm mm}$ ) transmittance maps of a polarizer at 1053 nm wavelength, $p$ -polarization, 55° of incidence: (a)  ${\rm RH} {\lt} {1}\% $ and (b)  ${\rm RH} = {4}\% $ .
Fig. 9.
Fig. 9. (a) Transmission factor of a polarizer as function of the angle for two RH. (b) Transmission curve relative shift as a function of RH.
Fig. 10.
Fig. 10. Gratings $ - {1R}$ measurement system.
Fig. 11.
Fig. 11. SEM observations of damage sites triggered on defect precursors and revealed thanks to the rasterscan procedure. (a) High reflective mirror [13]. (b) Fused silica optics irradiated by IR and UV beams, respectively.
Fig. 12.
Fig. 12. Example of the application of the procedure to a large fused silica plate irradiated at 355 nm and 3 ns. Damage densities as a function of fluence: all damage sites (blue diamonds and the associated blue error bars) and growing damage sites (red crosses and the upper error bars represented by red squares).
Fig. 13.
Fig. 13. Three main instruments for wavefront measurements at CEA.
Fig. 14.
Fig. 14. Typical PSD measurements and noises over the whole spatial frequency range accessible to CEA instruments.
Fig. 15.
Fig. 15. Screenshot of the wavefront analysis software with synthetic data.

Tables (3)

Tables Icon

Table 1. Example of Surface Imperfection Specifications

Tables Icon

Table 2. Typical Photometric Specifications for LMJ Large Optical Components

Tables Icon

Table 3. Typical Wavefront Specifications for LMJ Optics

Metrics