Abstract

Based on the extended Huygens–Fresnel principle, the analytical expressions for the intensity distribution, effective radius of curvature, beam wander, Strehl ratio, and the power in the bucket of a partially coherent crescent-like (PCCL) beam under the maritime environment are derived. The propagation properties of the PCCL beams through the maritime environment are investigated in detail. Numerical results indicate that, for the maritime environment, the propagation properties and beam quality of a PCCL beam are closely related to its initial beam parameters and the turbulence parameters. Comparative analyses are performed for the new models under the marine turbulence and the terrestrial turbulence. It turns out that the marine turbulence influences the beam width and the beam wander more than the terrestrial turbulence does. Also, the beam quality of the PCCL beams in marine turbulence can be improved by choosing a large beam width, high coherence length, or short wavelength. The PCCL beams have a range-dependent tilt, which can be useful for some practical applications, such as traveling around an obstacle. The results are of significance for over-the-sea communication systems.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere

F. Wang, J. Li, G. Martinez-Piedra, and O. Korotkova
Opt. Express 25(21) 26055-26066 (2017)

Superimposed partially coherent beams propagating through atmospheric turbulence

Xiaoling Ji, Entao Zhang, and Baida Lü
J. Opt. Soc. Am. B 25(5) 825-833 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription