Abstract

Research has shown that the pupil responds differently depending on the spatial frequency of the gazing stimulus. In this study, we examined the effects of spatial- and object-based attention on pupillary response as a function of spatial frequency using grating stimuli and filtered natural images by manipulating the participants’ attentional state. Furthermore, we aimed to obtain the pupillary response to spatial frequency accurately by reducing the contamination of unintended spatial frequency components in the stimulus by using gratings with a Gabor envelope. We revealed that all stimuli could elicit large pupil constriction for an intermediate range (2–8 c/d) of spatial frequency and that both spatial- and object-based attention modulate the pupillary response function to spatial frequency. These facts may enhance Human Computer Interaction design to use people’s attentional state.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pupillary response: an index of visual threshold

Barbara E. Stewart and Rockefeller S. L. Young
Appl. Opt. 28(6) 1122-1127 (1989)

A Masking Technique for Isolating the Pupillary Response to Focused Light*†

Jack M. Fugate
J. Opt. Soc. Am. 44(10) 771-775 (1954)

Spatial pattern as a stimulus to the pupillary system

Kazuhiko Ukai
J. Opt. Soc. Am. A 2(7) 1094-1100 (1985)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Ellis, “The pupillary light reflex in normal subjects,” Br. J. Ophthalmol. 65, 754–759 (1981).
    [Crossref]
  2. J. L. Barbur, A. J. Harlow, and A. Sahraie, “Pupillary responses to stimulus structure, color and movement,” Ophthalmic Physiolog. Opt. 12, 137–141 (1992).
    [Crossref]
  3. P. D. R. Gamlin, H. Y. Zhang, A. Harlow, and J. L. Barbur, “Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey,” Vis. Res. 38, 3353–3358 (1998).
    [Crossref]
  4. J. L. Barbur and W. D. Thomson, “Pupil response as an objective measure of visual acuity,” Ophthalmic Physiolog. Opt. 7, 425–429 (1987).
    [Crossref]
  5. J. Slooter and D. V. Norren, “Visual acuity measured with pupil responses to checkerboard stimuli,” Invest. Ophthalmol. Visual Sci. 19, 105–108 (1980).
  6. K. Ukai, “Spatial pattern as a stimulus to the pupillary system,” J. Opt. Soc. Am. A 2, 1094–1100 (1985).
    [Crossref]
  7. K. D. Cocker and M. J. Moseley, “Development of pupillary responses to grating stimuli,” Ophthalmic Physiolog. Opt. 16, 64–67 (1996).
    [Crossref]
  8. R. S. L. Young, E. Kimura, and P. R. Delucia, “A pupillometric correlate of scotopic visual acuity,” Vis. Res. 35, 2235–2241 (1995).
    [Crossref]
  9. J. Klingner, B. Tversky, and P. Hanrahan, “Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks,” Psychophysiology 48, 323–332 (2011).
    [Crossref]
  10. M. K. Eckstein, B. G. Carrillo, A. T. M. Singley, and S. A. Bunge, “Beyond eye gaze: what else can eyetracking reveal about cognition and cognitive development?” Dev. Cogn. Neurosci. 25, 69-91 (2017).
    [Crossref]
  11. B. Laeng and U. Sulutvedt, “The eye pupil adjusts to imaginary light,” Psychol. Sci. 25, 188–197 (2014).
    [Crossref]
  12. P. Binda, M. Pereverzeva, and S. O. Murray, “Pupil constrictions to photographs of the sun,” J. Vis. 13(6), 8 (2013).
    [Crossref]
  13. H. Wilhelm, “Neuro-ophthalmology of pupillary function-practical guidelines,” J. Neurol. 245, 573–583 (1998).
    [Crossref]
  14. I. E. Loewenfeld, The Pupil: Anatomy, Physiology and Clinical Applications (Iowa State University, 1993)
  15. C. A. Wang and D. P. Munoz, “A circuit for pupil orienting responses: implications for cognitive modulation of pupil size,” Curr. Opin. Neurobiol. 33, 134–140 (2015).
    [Crossref]
  16. J. L. Barbur and P. M. Forsyth, “Can the pupil response be used as a measure of the visual input associated with the geniculo-striate pathway,” Clin. Vis. Sci. 1, 107–111 (1986).
  17. P. Binda, M. Pereverzeva, and S. O. Murray, “Attention to bright surfaces enhances the pupillary light reflex,” J. Neurosci. 33, 2199–2204 (2013).
    [Crossref]
  18. P. Binda, M. Pereverzeva, and S. O. Murray, “Pupil size reflects the focus of feature-based attention,” Am. J. Physiol. 112, 3046–3052 (2014).
    [Crossref]
  19. M. Carrasco, “Visual attention: the past 25 years,” Vis. Res. 51,1484–1525 (2011).
    [Crossref]
  20. J. T. Serences, J. Schwarzbach, S. M. Courtney, X. Golay, and S. Yantis, “Control of object-based attention in human cortex,” Cereb. Cortex 14, 1346–1357 (2004).
    [Crossref]
  21. O. E. Kang, K. E. Huffer, and T. P. Wheatley, “Pupil dilation dynamics track attention to high-level information,” PLoS One 9, e102463 (2014).
    [Crossref]
  22. R. S. L. Young, B. C. Han, and P. Y. Wu, “Transient and sustained components of the pupillary responses evoked by luminance and color,” Vis. Res. 33, 437–446 (1993).
    [Crossref]
  23. R. S. L. Young and J. Kennish, “Transient and sustained components of the pupil response evoked by achromatic spatial patterns,” Vis. Res. 33, 2239–2252 (1993).
    [Crossref]
  24. D. G. Pelli, “Pixel independence: measuring spatial interactions on a CRT display,” Spat. Vis. 10, 443-446 (1997).
    [Crossref]
  25. R. L. Dougherty, A. S. Edelman, and J. M. Hyman, “Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation,” Math. Comp. 52, 471–494 (1989).
    [Crossref]
  26. O. Bergamin and R. H. Kardon, “Latency of the pupil light reflex: sample rate, stimulus intensity, and variation in normal subjects,” Invest. Ophthalmol. Vis. Sci. 44, 1546–1554 (2003).
    [Crossref]
  27. J. Rovamo and V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
    [Crossref]
  28. K. Matsuda, T. Nagami, Y. Sugase, A. Takemura, and K. Kawano, “A widely applicable real-time mono/binocular eye tracking system using a high frame-rate digital camera,” in International Conference on Human-Computer Interaction (Springer, 2017), 593–608.
  29. V. Willenbockel, J. Sadr, D. Fiset, G. O. Horne, F. Gosselin, and J. W. Tanaka, “Controlling low-level image properties: the SHINE toolbox,” Behav. Res. Methods 42, 671–684 (2010).
    [Crossref]
  30. B. Gagl, S. Hawelka, and F. Hutzler, “Systematic influence of gaze position on pupil size measurement: analysis and correction,” Behav. Res. Methods 43, 1171-1181 (2011).
    [Crossref]
  31. C. Hickey, W. van Zoest, and J. Theeuwes, “The time course of exogenous and endogenous control of covert attention,” Exp. Brain Res. 201, 789–796 (2010).
    [Crossref]
  32. P. L. Kaufman, L. A. Levin, F. H. Adler, and A. Alm, Adler’s Physiology of the Eye (Elsevier Health Sciences, 2011).
  33. W. D. Schäfer and R. A. Weale, “The influence of age and retinal illumination on the pupillary near reflex,” Vis. Res. 10, 179–191 (1970).
    [Crossref]
  34. J. M. Brown and N. Weisstein, “A spatial frequency effect on perceived depth,” Percept. Psychophys. 44, 157–166 (1988).
    [Crossref]
  35. T. Takeda, Y. Lida, and Y. Fukui, “Dynamic eye accommodation evoked by apparent distances,” Optometry Vis. Sci. 67, 450–455 (1990).
    [Crossref]
  36. F. V. Malmstrom and R. J. Randle, “Effects of visual imagery on the accommodation response,” Percep. Psychophys. 19, 450–453 (1976).
    [Crossref]
  37. J. T. Enright, “Art and the oculomotor system: perspective illustrations evoke vergence changes,” Perception 16, 731–746 (1987).
    [Crossref]
  38. K. Tsuchiya, K. Ukai, and S. Ishikawa, “A quasistatic study of pupil and accommodation after-effects following near vision,” Ophthalmic Physiolog. Opt. 9, 385–391 (1989).
    [Crossref]
  39. J. M. Brown and C. Koch, “Influences of occlusion, color, and luminance on the perception of fragmented pictures,” Perceptual Motor Skills 90, 1033–1044 (2000).
    [Crossref]
  40. J. Robinson and A. R. Fielder, “Pupillary diameter and reaction to light in preterm neonates,” Arch. Disease Childhood 65, 35–38 (1990).
    [Crossref]
  41. K. D. Cocker, M. J. Moseley, H. F. Stirling, and A. R. Fielder, “Delayed visual maturation: pupillary responses implicate subcortical and cortical visual systems,” Dev. Med. Child Neurol. 40, 160–162 (1998).
    [Crossref]
  42. K. D. Cocker, M. J. Moseley, J. G. Bissenden, and A. R. Fielder, “Visual acuity and pupillary responses to spatial structure in infants,” Invest. Ophthalmol. Visual Sci. 35, 2620–2625 (1994).
  43. J. L. Barbur, J. Wolf, and P. Lennie, “Visual processing levels revealed by response latencies to changes in different visual attributes,” Proc. R. Soc. London B 265, 2321–2325 (1998).
    [Crossref]
  44. P. H. Schiller, J. G. Malpeli, and S. J. Schein, “Composition of geniculostriate input to superior colliculus of the rhesus monkey,” J. Neurophysiol. 42, 1124–1133 (1979).
    [Crossref]
  45. R. J. Krauzlis, L. P. Lovejoy, and A. Zénon, “Superior colliculus and visual spatial attention,” Annu. Rev. Neurosci. 36, 165-182 (2013).
    [Crossref]
  46. J. Stoll, C. Chatelle, O. Carter, C. Koch, S. Laureys, and W. Einhäuser, “Pupil responses allow communication in locked-in syndrome patients,” Curr. Biol. 23, 647–648 (2013).
    [Crossref]
  47. S. Mathôt, J. B. Melmi, L. van der Linden, and S. Van der Stigchel, “The mind-writing pupil: a human-computer interface based on decoding of covert attention through pupillometry,” PLoS One 11, 1–15 (2016).
    [Crossref]

2017 (1)

M. K. Eckstein, B. G. Carrillo, A. T. M. Singley, and S. A. Bunge, “Beyond eye gaze: what else can eyetracking reveal about cognition and cognitive development?” Dev. Cogn. Neurosci. 25, 69-91 (2017).
[Crossref]

2016 (1)

S. Mathôt, J. B. Melmi, L. van der Linden, and S. Van der Stigchel, “The mind-writing pupil: a human-computer interface based on decoding of covert attention through pupillometry,” PLoS One 11, 1–15 (2016).
[Crossref]

2015 (1)

C. A. Wang and D. P. Munoz, “A circuit for pupil orienting responses: implications for cognitive modulation of pupil size,” Curr. Opin. Neurobiol. 33, 134–140 (2015).
[Crossref]

2014 (3)

P. Binda, M. Pereverzeva, and S. O. Murray, “Pupil size reflects the focus of feature-based attention,” Am. J. Physiol. 112, 3046–3052 (2014).
[Crossref]

B. Laeng and U. Sulutvedt, “The eye pupil adjusts to imaginary light,” Psychol. Sci. 25, 188–197 (2014).
[Crossref]

O. E. Kang, K. E. Huffer, and T. P. Wheatley, “Pupil dilation dynamics track attention to high-level information,” PLoS One 9, e102463 (2014).
[Crossref]

2013 (4)

P. Binda, M. Pereverzeva, and S. O. Murray, “Attention to bright surfaces enhances the pupillary light reflex,” J. Neurosci. 33, 2199–2204 (2013).
[Crossref]

P. Binda, M. Pereverzeva, and S. O. Murray, “Pupil constrictions to photographs of the sun,” J. Vis. 13(6), 8 (2013).
[Crossref]

R. J. Krauzlis, L. P. Lovejoy, and A. Zénon, “Superior colliculus and visual spatial attention,” Annu. Rev. Neurosci. 36, 165-182 (2013).
[Crossref]

J. Stoll, C. Chatelle, O. Carter, C. Koch, S. Laureys, and W. Einhäuser, “Pupil responses allow communication in locked-in syndrome patients,” Curr. Biol. 23, 647–648 (2013).
[Crossref]

2011 (3)

M. Carrasco, “Visual attention: the past 25 years,” Vis. Res. 51,1484–1525 (2011).
[Crossref]

J. Klingner, B. Tversky, and P. Hanrahan, “Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks,” Psychophysiology 48, 323–332 (2011).
[Crossref]

B. Gagl, S. Hawelka, and F. Hutzler, “Systematic influence of gaze position on pupil size measurement: analysis and correction,” Behav. Res. Methods 43, 1171-1181 (2011).
[Crossref]

2010 (2)

C. Hickey, W. van Zoest, and J. Theeuwes, “The time course of exogenous and endogenous control of covert attention,” Exp. Brain Res. 201, 789–796 (2010).
[Crossref]

V. Willenbockel, J. Sadr, D. Fiset, G. O. Horne, F. Gosselin, and J. W. Tanaka, “Controlling low-level image properties: the SHINE toolbox,” Behav. Res. Methods 42, 671–684 (2010).
[Crossref]

2004 (1)

J. T. Serences, J. Schwarzbach, S. M. Courtney, X. Golay, and S. Yantis, “Control of object-based attention in human cortex,” Cereb. Cortex 14, 1346–1357 (2004).
[Crossref]

2003 (1)

O. Bergamin and R. H. Kardon, “Latency of the pupil light reflex: sample rate, stimulus intensity, and variation in normal subjects,” Invest. Ophthalmol. Vis. Sci. 44, 1546–1554 (2003).
[Crossref]

2000 (1)

J. M. Brown and C. Koch, “Influences of occlusion, color, and luminance on the perception of fragmented pictures,” Perceptual Motor Skills 90, 1033–1044 (2000).
[Crossref]

1998 (4)

H. Wilhelm, “Neuro-ophthalmology of pupillary function-practical guidelines,” J. Neurol. 245, 573–583 (1998).
[Crossref]

P. D. R. Gamlin, H. Y. Zhang, A. Harlow, and J. L. Barbur, “Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey,” Vis. Res. 38, 3353–3358 (1998).
[Crossref]

K. D. Cocker, M. J. Moseley, H. F. Stirling, and A. R. Fielder, “Delayed visual maturation: pupillary responses implicate subcortical and cortical visual systems,” Dev. Med. Child Neurol. 40, 160–162 (1998).
[Crossref]

J. L. Barbur, J. Wolf, and P. Lennie, “Visual processing levels revealed by response latencies to changes in different visual attributes,” Proc. R. Soc. London B 265, 2321–2325 (1998).
[Crossref]

1997 (1)

D. G. Pelli, “Pixel independence: measuring spatial interactions on a CRT display,” Spat. Vis. 10, 443-446 (1997).
[Crossref]

1996 (1)

K. D. Cocker and M. J. Moseley, “Development of pupillary responses to grating stimuli,” Ophthalmic Physiolog. Opt. 16, 64–67 (1996).
[Crossref]

1995 (1)

R. S. L. Young, E. Kimura, and P. R. Delucia, “A pupillometric correlate of scotopic visual acuity,” Vis. Res. 35, 2235–2241 (1995).
[Crossref]

1994 (1)

K. D. Cocker, M. J. Moseley, J. G. Bissenden, and A. R. Fielder, “Visual acuity and pupillary responses to spatial structure in infants,” Invest. Ophthalmol. Visual Sci. 35, 2620–2625 (1994).

1993 (2)

R. S. L. Young, B. C. Han, and P. Y. Wu, “Transient and sustained components of the pupillary responses evoked by luminance and color,” Vis. Res. 33, 437–446 (1993).
[Crossref]

R. S. L. Young and J. Kennish, “Transient and sustained components of the pupil response evoked by achromatic spatial patterns,” Vis. Res. 33, 2239–2252 (1993).
[Crossref]

1992 (1)

J. L. Barbur, A. J. Harlow, and A. Sahraie, “Pupillary responses to stimulus structure, color and movement,” Ophthalmic Physiolog. Opt. 12, 137–141 (1992).
[Crossref]

1990 (2)

J. Robinson and A. R. Fielder, “Pupillary diameter and reaction to light in preterm neonates,” Arch. Disease Childhood 65, 35–38 (1990).
[Crossref]

T. Takeda, Y. Lida, and Y. Fukui, “Dynamic eye accommodation evoked by apparent distances,” Optometry Vis. Sci. 67, 450–455 (1990).
[Crossref]

1989 (2)

R. L. Dougherty, A. S. Edelman, and J. M. Hyman, “Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation,” Math. Comp. 52, 471–494 (1989).
[Crossref]

K. Tsuchiya, K. Ukai, and S. Ishikawa, “A quasistatic study of pupil and accommodation after-effects following near vision,” Ophthalmic Physiolog. Opt. 9, 385–391 (1989).
[Crossref]

1988 (1)

J. M. Brown and N. Weisstein, “A spatial frequency effect on perceived depth,” Percept. Psychophys. 44, 157–166 (1988).
[Crossref]

1987 (2)

J. T. Enright, “Art and the oculomotor system: perspective illustrations evoke vergence changes,” Perception 16, 731–746 (1987).
[Crossref]

J. L. Barbur and W. D. Thomson, “Pupil response as an objective measure of visual acuity,” Ophthalmic Physiolog. Opt. 7, 425–429 (1987).
[Crossref]

1986 (1)

J. L. Barbur and P. M. Forsyth, “Can the pupil response be used as a measure of the visual input associated with the geniculo-striate pathway,” Clin. Vis. Sci. 1, 107–111 (1986).

1985 (1)

1981 (1)

C. J. Ellis, “The pupillary light reflex in normal subjects,” Br. J. Ophthalmol. 65, 754–759 (1981).
[Crossref]

1980 (1)

J. Slooter and D. V. Norren, “Visual acuity measured with pupil responses to checkerboard stimuli,” Invest. Ophthalmol. Visual Sci. 19, 105–108 (1980).

1979 (2)

J. Rovamo and V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[Crossref]

P. H. Schiller, J. G. Malpeli, and S. J. Schein, “Composition of geniculostriate input to superior colliculus of the rhesus monkey,” J. Neurophysiol. 42, 1124–1133 (1979).
[Crossref]

1976 (1)

F. V. Malmstrom and R. J. Randle, “Effects of visual imagery on the accommodation response,” Percep. Psychophys. 19, 450–453 (1976).
[Crossref]

1970 (1)

W. D. Schäfer and R. A. Weale, “The influence of age and retinal illumination on the pupillary near reflex,” Vis. Res. 10, 179–191 (1970).
[Crossref]

Adler, F. H.

P. L. Kaufman, L. A. Levin, F. H. Adler, and A. Alm, Adler’s Physiology of the Eye (Elsevier Health Sciences, 2011).

Alm, A.

P. L. Kaufman, L. A. Levin, F. H. Adler, and A. Alm, Adler’s Physiology of the Eye (Elsevier Health Sciences, 2011).

Barbur, J. L.

J. L. Barbur, J. Wolf, and P. Lennie, “Visual processing levels revealed by response latencies to changes in different visual attributes,” Proc. R. Soc. London B 265, 2321–2325 (1998).
[Crossref]

P. D. R. Gamlin, H. Y. Zhang, A. Harlow, and J. L. Barbur, “Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey,” Vis. Res. 38, 3353–3358 (1998).
[Crossref]

J. L. Barbur, A. J. Harlow, and A. Sahraie, “Pupillary responses to stimulus structure, color and movement,” Ophthalmic Physiolog. Opt. 12, 137–141 (1992).
[Crossref]

J. L. Barbur and W. D. Thomson, “Pupil response as an objective measure of visual acuity,” Ophthalmic Physiolog. Opt. 7, 425–429 (1987).
[Crossref]

J. L. Barbur and P. M. Forsyth, “Can the pupil response be used as a measure of the visual input associated with the geniculo-striate pathway,” Clin. Vis. Sci. 1, 107–111 (1986).

Bergamin, O.

O. Bergamin and R. H. Kardon, “Latency of the pupil light reflex: sample rate, stimulus intensity, and variation in normal subjects,” Invest. Ophthalmol. Vis. Sci. 44, 1546–1554 (2003).
[Crossref]

Binda, P.

P. Binda, M. Pereverzeva, and S. O. Murray, “Pupil size reflects the focus of feature-based attention,” Am. J. Physiol. 112, 3046–3052 (2014).
[Crossref]

P. Binda, M. Pereverzeva, and S. O. Murray, “Attention to bright surfaces enhances the pupillary light reflex,” J. Neurosci. 33, 2199–2204 (2013).
[Crossref]

P. Binda, M. Pereverzeva, and S. O. Murray, “Pupil constrictions to photographs of the sun,” J. Vis. 13(6), 8 (2013).
[Crossref]

Bissenden, J. G.

K. D. Cocker, M. J. Moseley, J. G. Bissenden, and A. R. Fielder, “Visual acuity and pupillary responses to spatial structure in infants,” Invest. Ophthalmol. Visual Sci. 35, 2620–2625 (1994).

Brown, J. M.

J. M. Brown and C. Koch, “Influences of occlusion, color, and luminance on the perception of fragmented pictures,” Perceptual Motor Skills 90, 1033–1044 (2000).
[Crossref]

J. M. Brown and N. Weisstein, “A spatial frequency effect on perceived depth,” Percept. Psychophys. 44, 157–166 (1988).
[Crossref]

Bunge, S. A.

M. K. Eckstein, B. G. Carrillo, A. T. M. Singley, and S. A. Bunge, “Beyond eye gaze: what else can eyetracking reveal about cognition and cognitive development?” Dev. Cogn. Neurosci. 25, 69-91 (2017).
[Crossref]

Carrasco, M.

M. Carrasco, “Visual attention: the past 25 years,” Vis. Res. 51,1484–1525 (2011).
[Crossref]

Carrillo, B. G.

M. K. Eckstein, B. G. Carrillo, A. T. M. Singley, and S. A. Bunge, “Beyond eye gaze: what else can eyetracking reveal about cognition and cognitive development?” Dev. Cogn. Neurosci. 25, 69-91 (2017).
[Crossref]

Carter, O.

J. Stoll, C. Chatelle, O. Carter, C. Koch, S. Laureys, and W. Einhäuser, “Pupil responses allow communication in locked-in syndrome patients,” Curr. Biol. 23, 647–648 (2013).
[Crossref]

Chatelle, C.

J. Stoll, C. Chatelle, O. Carter, C. Koch, S. Laureys, and W. Einhäuser, “Pupil responses allow communication in locked-in syndrome patients,” Curr. Biol. 23, 647–648 (2013).
[Crossref]

Cocker, K. D.

K. D. Cocker, M. J. Moseley, H. F. Stirling, and A. R. Fielder, “Delayed visual maturation: pupillary responses implicate subcortical and cortical visual systems,” Dev. Med. Child Neurol. 40, 160–162 (1998).
[Crossref]

K. D. Cocker and M. J. Moseley, “Development of pupillary responses to grating stimuli,” Ophthalmic Physiolog. Opt. 16, 64–67 (1996).
[Crossref]

K. D. Cocker, M. J. Moseley, J. G. Bissenden, and A. R. Fielder, “Visual acuity and pupillary responses to spatial structure in infants,” Invest. Ophthalmol. Visual Sci. 35, 2620–2625 (1994).

Courtney, S. M.

J. T. Serences, J. Schwarzbach, S. M. Courtney, X. Golay, and S. Yantis, “Control of object-based attention in human cortex,” Cereb. Cortex 14, 1346–1357 (2004).
[Crossref]

Delucia, P. R.

R. S. L. Young, E. Kimura, and P. R. Delucia, “A pupillometric correlate of scotopic visual acuity,” Vis. Res. 35, 2235–2241 (1995).
[Crossref]

Dougherty, R. L.

R. L. Dougherty, A. S. Edelman, and J. M. Hyman, “Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation,” Math. Comp. 52, 471–494 (1989).
[Crossref]

Eckstein, M. K.

M. K. Eckstein, B. G. Carrillo, A. T. M. Singley, and S. A. Bunge, “Beyond eye gaze: what else can eyetracking reveal about cognition and cognitive development?” Dev. Cogn. Neurosci. 25, 69-91 (2017).
[Crossref]

Edelman, A. S.

R. L. Dougherty, A. S. Edelman, and J. M. Hyman, “Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation,” Math. Comp. 52, 471–494 (1989).
[Crossref]

Einhäuser, W.

J. Stoll, C. Chatelle, O. Carter, C. Koch, S. Laureys, and W. Einhäuser, “Pupil responses allow communication in locked-in syndrome patients,” Curr. Biol. 23, 647–648 (2013).
[Crossref]

Ellis, C. J.

C. J. Ellis, “The pupillary light reflex in normal subjects,” Br. J. Ophthalmol. 65, 754–759 (1981).
[Crossref]

Enright, J. T.

J. T. Enright, “Art and the oculomotor system: perspective illustrations evoke vergence changes,” Perception 16, 731–746 (1987).
[Crossref]

Fielder, A. R.

K. D. Cocker, M. J. Moseley, H. F. Stirling, and A. R. Fielder, “Delayed visual maturation: pupillary responses implicate subcortical and cortical visual systems,” Dev. Med. Child Neurol. 40, 160–162 (1998).
[Crossref]

K. D. Cocker, M. J. Moseley, J. G. Bissenden, and A. R. Fielder, “Visual acuity and pupillary responses to spatial structure in infants,” Invest. Ophthalmol. Visual Sci. 35, 2620–2625 (1994).

J. Robinson and A. R. Fielder, “Pupillary diameter and reaction to light in preterm neonates,” Arch. Disease Childhood 65, 35–38 (1990).
[Crossref]

Fiset, D.

V. Willenbockel, J. Sadr, D. Fiset, G. O. Horne, F. Gosselin, and J. W. Tanaka, “Controlling low-level image properties: the SHINE toolbox,” Behav. Res. Methods 42, 671–684 (2010).
[Crossref]

Forsyth, P. M.

J. L. Barbur and P. M. Forsyth, “Can the pupil response be used as a measure of the visual input associated with the geniculo-striate pathway,” Clin. Vis. Sci. 1, 107–111 (1986).

Fukui, Y.

T. Takeda, Y. Lida, and Y. Fukui, “Dynamic eye accommodation evoked by apparent distances,” Optometry Vis. Sci. 67, 450–455 (1990).
[Crossref]

Gagl, B.

B. Gagl, S. Hawelka, and F. Hutzler, “Systematic influence of gaze position on pupil size measurement: analysis and correction,” Behav. Res. Methods 43, 1171-1181 (2011).
[Crossref]

Gamlin, P. D. R.

P. D. R. Gamlin, H. Y. Zhang, A. Harlow, and J. L. Barbur, “Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey,” Vis. Res. 38, 3353–3358 (1998).
[Crossref]

Golay, X.

J. T. Serences, J. Schwarzbach, S. M. Courtney, X. Golay, and S. Yantis, “Control of object-based attention in human cortex,” Cereb. Cortex 14, 1346–1357 (2004).
[Crossref]

Gosselin, F.

V. Willenbockel, J. Sadr, D. Fiset, G. O. Horne, F. Gosselin, and J. W. Tanaka, “Controlling low-level image properties: the SHINE toolbox,” Behav. Res. Methods 42, 671–684 (2010).
[Crossref]

Han, B. C.

R. S. L. Young, B. C. Han, and P. Y. Wu, “Transient and sustained components of the pupillary responses evoked by luminance and color,” Vis. Res. 33, 437–446 (1993).
[Crossref]

Hanrahan, P.

J. Klingner, B. Tversky, and P. Hanrahan, “Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks,” Psychophysiology 48, 323–332 (2011).
[Crossref]

Harlow, A.

P. D. R. Gamlin, H. Y. Zhang, A. Harlow, and J. L. Barbur, “Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey,” Vis. Res. 38, 3353–3358 (1998).
[Crossref]

Harlow, A. J.

J. L. Barbur, A. J. Harlow, and A. Sahraie, “Pupillary responses to stimulus structure, color and movement,” Ophthalmic Physiolog. Opt. 12, 137–141 (1992).
[Crossref]

Hawelka, S.

B. Gagl, S. Hawelka, and F. Hutzler, “Systematic influence of gaze position on pupil size measurement: analysis and correction,” Behav. Res. Methods 43, 1171-1181 (2011).
[Crossref]

Hickey, C.

C. Hickey, W. van Zoest, and J. Theeuwes, “The time course of exogenous and endogenous control of covert attention,” Exp. Brain Res. 201, 789–796 (2010).
[Crossref]

Horne, G. O.

V. Willenbockel, J. Sadr, D. Fiset, G. O. Horne, F. Gosselin, and J. W. Tanaka, “Controlling low-level image properties: the SHINE toolbox,” Behav. Res. Methods 42, 671–684 (2010).
[Crossref]

Huffer, K. E.

O. E. Kang, K. E. Huffer, and T. P. Wheatley, “Pupil dilation dynamics track attention to high-level information,” PLoS One 9, e102463 (2014).
[Crossref]

Hutzler, F.

B. Gagl, S. Hawelka, and F. Hutzler, “Systematic influence of gaze position on pupil size measurement: analysis and correction,” Behav. Res. Methods 43, 1171-1181 (2011).
[Crossref]

Hyman, J. M.

R. L. Dougherty, A. S. Edelman, and J. M. Hyman, “Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation,” Math. Comp. 52, 471–494 (1989).
[Crossref]

Ishikawa, S.

K. Tsuchiya, K. Ukai, and S. Ishikawa, “A quasistatic study of pupil and accommodation after-effects following near vision,” Ophthalmic Physiolog. Opt. 9, 385–391 (1989).
[Crossref]

Kang, O. E.

O. E. Kang, K. E. Huffer, and T. P. Wheatley, “Pupil dilation dynamics track attention to high-level information,” PLoS One 9, e102463 (2014).
[Crossref]

Kardon, R. H.

O. Bergamin and R. H. Kardon, “Latency of the pupil light reflex: sample rate, stimulus intensity, and variation in normal subjects,” Invest. Ophthalmol. Vis. Sci. 44, 1546–1554 (2003).
[Crossref]

Kaufman, P. L.

P. L. Kaufman, L. A. Levin, F. H. Adler, and A. Alm, Adler’s Physiology of the Eye (Elsevier Health Sciences, 2011).

Kawano, K.

K. Matsuda, T. Nagami, Y. Sugase, A. Takemura, and K. Kawano, “A widely applicable real-time mono/binocular eye tracking system using a high frame-rate digital camera,” in International Conference on Human-Computer Interaction (Springer, 2017), 593–608.

Kennish, J.

R. S. L. Young and J. Kennish, “Transient and sustained components of the pupil response evoked by achromatic spatial patterns,” Vis. Res. 33, 2239–2252 (1993).
[Crossref]

Kimura, E.

R. S. L. Young, E. Kimura, and P. R. Delucia, “A pupillometric correlate of scotopic visual acuity,” Vis. Res. 35, 2235–2241 (1995).
[Crossref]

Klingner, J.

J. Klingner, B. Tversky, and P. Hanrahan, “Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks,” Psychophysiology 48, 323–332 (2011).
[Crossref]

Koch, C.

J. Stoll, C. Chatelle, O. Carter, C. Koch, S. Laureys, and W. Einhäuser, “Pupil responses allow communication in locked-in syndrome patients,” Curr. Biol. 23, 647–648 (2013).
[Crossref]

J. M. Brown and C. Koch, “Influences of occlusion, color, and luminance on the perception of fragmented pictures,” Perceptual Motor Skills 90, 1033–1044 (2000).
[Crossref]

Krauzlis, R. J.

R. J. Krauzlis, L. P. Lovejoy, and A. Zénon, “Superior colliculus and visual spatial attention,” Annu. Rev. Neurosci. 36, 165-182 (2013).
[Crossref]

Laeng, B.

B. Laeng and U. Sulutvedt, “The eye pupil adjusts to imaginary light,” Psychol. Sci. 25, 188–197 (2014).
[Crossref]

Laureys, S.

J. Stoll, C. Chatelle, O. Carter, C. Koch, S. Laureys, and W. Einhäuser, “Pupil responses allow communication in locked-in syndrome patients,” Curr. Biol. 23, 647–648 (2013).
[Crossref]

Lennie, P.

J. L. Barbur, J. Wolf, and P. Lennie, “Visual processing levels revealed by response latencies to changes in different visual attributes,” Proc. R. Soc. London B 265, 2321–2325 (1998).
[Crossref]

Levin, L. A.

P. L. Kaufman, L. A. Levin, F. H. Adler, and A. Alm, Adler’s Physiology of the Eye (Elsevier Health Sciences, 2011).

Lida, Y.

T. Takeda, Y. Lida, and Y. Fukui, “Dynamic eye accommodation evoked by apparent distances,” Optometry Vis. Sci. 67, 450–455 (1990).
[Crossref]

Loewenfeld, I. E.

I. E. Loewenfeld, The Pupil: Anatomy, Physiology and Clinical Applications (Iowa State University, 1993)

Lovejoy, L. P.

R. J. Krauzlis, L. P. Lovejoy, and A. Zénon, “Superior colliculus and visual spatial attention,” Annu. Rev. Neurosci. 36, 165-182 (2013).
[Crossref]

Malmstrom, F. V.

F. V. Malmstrom and R. J. Randle, “Effects of visual imagery on the accommodation response,” Percep. Psychophys. 19, 450–453 (1976).
[Crossref]

Malpeli, J. G.

P. H. Schiller, J. G. Malpeli, and S. J. Schein, “Composition of geniculostriate input to superior colliculus of the rhesus monkey,” J. Neurophysiol. 42, 1124–1133 (1979).
[Crossref]

Mathôt, S.

S. Mathôt, J. B. Melmi, L. van der Linden, and S. Van der Stigchel, “The mind-writing pupil: a human-computer interface based on decoding of covert attention through pupillometry,” PLoS One 11, 1–15 (2016).
[Crossref]

Matsuda, K.

K. Matsuda, T. Nagami, Y. Sugase, A. Takemura, and K. Kawano, “A widely applicable real-time mono/binocular eye tracking system using a high frame-rate digital camera,” in International Conference on Human-Computer Interaction (Springer, 2017), 593–608.

Melmi, J. B.

S. Mathôt, J. B. Melmi, L. van der Linden, and S. Van der Stigchel, “The mind-writing pupil: a human-computer interface based on decoding of covert attention through pupillometry,” PLoS One 11, 1–15 (2016).
[Crossref]

Moseley, M. J.

K. D. Cocker, M. J. Moseley, H. F. Stirling, and A. R. Fielder, “Delayed visual maturation: pupillary responses implicate subcortical and cortical visual systems,” Dev. Med. Child Neurol. 40, 160–162 (1998).
[Crossref]

K. D. Cocker and M. J. Moseley, “Development of pupillary responses to grating stimuli,” Ophthalmic Physiolog. Opt. 16, 64–67 (1996).
[Crossref]

K. D. Cocker, M. J. Moseley, J. G. Bissenden, and A. R. Fielder, “Visual acuity and pupillary responses to spatial structure in infants,” Invest. Ophthalmol. Visual Sci. 35, 2620–2625 (1994).

Munoz, D. P.

C. A. Wang and D. P. Munoz, “A circuit for pupil orienting responses: implications for cognitive modulation of pupil size,” Curr. Opin. Neurobiol. 33, 134–140 (2015).
[Crossref]

Murray, S. O.

P. Binda, M. Pereverzeva, and S. O. Murray, “Pupil size reflects the focus of feature-based attention,” Am. J. Physiol. 112, 3046–3052 (2014).
[Crossref]

P. Binda, M. Pereverzeva, and S. O. Murray, “Attention to bright surfaces enhances the pupillary light reflex,” J. Neurosci. 33, 2199–2204 (2013).
[Crossref]

P. Binda, M. Pereverzeva, and S. O. Murray, “Pupil constrictions to photographs of the sun,” J. Vis. 13(6), 8 (2013).
[Crossref]

Nagami, T.

K. Matsuda, T. Nagami, Y. Sugase, A. Takemura, and K. Kawano, “A widely applicable real-time mono/binocular eye tracking system using a high frame-rate digital camera,” in International Conference on Human-Computer Interaction (Springer, 2017), 593–608.

Norren, D. V.

J. Slooter and D. V. Norren, “Visual acuity measured with pupil responses to checkerboard stimuli,” Invest. Ophthalmol. Visual Sci. 19, 105–108 (1980).

Pelli, D. G.

D. G. Pelli, “Pixel independence: measuring spatial interactions on a CRT display,” Spat. Vis. 10, 443-446 (1997).
[Crossref]

Pereverzeva, M.

P. Binda, M. Pereverzeva, and S. O. Murray, “Pupil size reflects the focus of feature-based attention,” Am. J. Physiol. 112, 3046–3052 (2014).
[Crossref]

P. Binda, M. Pereverzeva, and S. O. Murray, “Attention to bright surfaces enhances the pupillary light reflex,” J. Neurosci. 33, 2199–2204 (2013).
[Crossref]

P. Binda, M. Pereverzeva, and S. O. Murray, “Pupil constrictions to photographs of the sun,” J. Vis. 13(6), 8 (2013).
[Crossref]

Randle, R. J.

F. V. Malmstrom and R. J. Randle, “Effects of visual imagery on the accommodation response,” Percep. Psychophys. 19, 450–453 (1976).
[Crossref]

Robinson, J.

J. Robinson and A. R. Fielder, “Pupillary diameter and reaction to light in preterm neonates,” Arch. Disease Childhood 65, 35–38 (1990).
[Crossref]

Rovamo, J.

J. Rovamo and V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[Crossref]

Sadr, J.

V. Willenbockel, J. Sadr, D. Fiset, G. O. Horne, F. Gosselin, and J. W. Tanaka, “Controlling low-level image properties: the SHINE toolbox,” Behav. Res. Methods 42, 671–684 (2010).
[Crossref]

Sahraie, A.

J. L. Barbur, A. J. Harlow, and A. Sahraie, “Pupillary responses to stimulus structure, color and movement,” Ophthalmic Physiolog. Opt. 12, 137–141 (1992).
[Crossref]

Schäfer, W. D.

W. D. Schäfer and R. A. Weale, “The influence of age and retinal illumination on the pupillary near reflex,” Vis. Res. 10, 179–191 (1970).
[Crossref]

Schein, S. J.

P. H. Schiller, J. G. Malpeli, and S. J. Schein, “Composition of geniculostriate input to superior colliculus of the rhesus monkey,” J. Neurophysiol. 42, 1124–1133 (1979).
[Crossref]

Schiller, P. H.

P. H. Schiller, J. G. Malpeli, and S. J. Schein, “Composition of geniculostriate input to superior colliculus of the rhesus monkey,” J. Neurophysiol. 42, 1124–1133 (1979).
[Crossref]

Schwarzbach, J.

J. T. Serences, J. Schwarzbach, S. M. Courtney, X. Golay, and S. Yantis, “Control of object-based attention in human cortex,” Cereb. Cortex 14, 1346–1357 (2004).
[Crossref]

Serences, J. T.

J. T. Serences, J. Schwarzbach, S. M. Courtney, X. Golay, and S. Yantis, “Control of object-based attention in human cortex,” Cereb. Cortex 14, 1346–1357 (2004).
[Crossref]

Singley, A. T. M.

M. K. Eckstein, B. G. Carrillo, A. T. M. Singley, and S. A. Bunge, “Beyond eye gaze: what else can eyetracking reveal about cognition and cognitive development?” Dev. Cogn. Neurosci. 25, 69-91 (2017).
[Crossref]

Slooter, J.

J. Slooter and D. V. Norren, “Visual acuity measured with pupil responses to checkerboard stimuli,” Invest. Ophthalmol. Visual Sci. 19, 105–108 (1980).

Stirling, H. F.

K. D. Cocker, M. J. Moseley, H. F. Stirling, and A. R. Fielder, “Delayed visual maturation: pupillary responses implicate subcortical and cortical visual systems,” Dev. Med. Child Neurol. 40, 160–162 (1998).
[Crossref]

Stoll, J.

J. Stoll, C. Chatelle, O. Carter, C. Koch, S. Laureys, and W. Einhäuser, “Pupil responses allow communication in locked-in syndrome patients,” Curr. Biol. 23, 647–648 (2013).
[Crossref]

Sugase, Y.

K. Matsuda, T. Nagami, Y. Sugase, A. Takemura, and K. Kawano, “A widely applicable real-time mono/binocular eye tracking system using a high frame-rate digital camera,” in International Conference on Human-Computer Interaction (Springer, 2017), 593–608.

Sulutvedt, U.

B. Laeng and U. Sulutvedt, “The eye pupil adjusts to imaginary light,” Psychol. Sci. 25, 188–197 (2014).
[Crossref]

Takeda, T.

T. Takeda, Y. Lida, and Y. Fukui, “Dynamic eye accommodation evoked by apparent distances,” Optometry Vis. Sci. 67, 450–455 (1990).
[Crossref]

Takemura, A.

K. Matsuda, T. Nagami, Y. Sugase, A. Takemura, and K. Kawano, “A widely applicable real-time mono/binocular eye tracking system using a high frame-rate digital camera,” in International Conference on Human-Computer Interaction (Springer, 2017), 593–608.

Tanaka, J. W.

V. Willenbockel, J. Sadr, D. Fiset, G. O. Horne, F. Gosselin, and J. W. Tanaka, “Controlling low-level image properties: the SHINE toolbox,” Behav. Res. Methods 42, 671–684 (2010).
[Crossref]

Theeuwes, J.

C. Hickey, W. van Zoest, and J. Theeuwes, “The time course of exogenous and endogenous control of covert attention,” Exp. Brain Res. 201, 789–796 (2010).
[Crossref]

Thomson, W. D.

J. L. Barbur and W. D. Thomson, “Pupil response as an objective measure of visual acuity,” Ophthalmic Physiolog. Opt. 7, 425–429 (1987).
[Crossref]

Tsuchiya, K.

K. Tsuchiya, K. Ukai, and S. Ishikawa, “A quasistatic study of pupil and accommodation after-effects following near vision,” Ophthalmic Physiolog. Opt. 9, 385–391 (1989).
[Crossref]

Tversky, B.

J. Klingner, B. Tversky, and P. Hanrahan, “Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks,” Psychophysiology 48, 323–332 (2011).
[Crossref]

Ukai, K.

K. Tsuchiya, K. Ukai, and S. Ishikawa, “A quasistatic study of pupil and accommodation after-effects following near vision,” Ophthalmic Physiolog. Opt. 9, 385–391 (1989).
[Crossref]

K. Ukai, “Spatial pattern as a stimulus to the pupillary system,” J. Opt. Soc. Am. A 2, 1094–1100 (1985).
[Crossref]

van der Linden, L.

S. Mathôt, J. B. Melmi, L. van der Linden, and S. Van der Stigchel, “The mind-writing pupil: a human-computer interface based on decoding of covert attention through pupillometry,” PLoS One 11, 1–15 (2016).
[Crossref]

Van der Stigchel, S.

S. Mathôt, J. B. Melmi, L. van der Linden, and S. Van der Stigchel, “The mind-writing pupil: a human-computer interface based on decoding of covert attention through pupillometry,” PLoS One 11, 1–15 (2016).
[Crossref]

van Zoest, W.

C. Hickey, W. van Zoest, and J. Theeuwes, “The time course of exogenous and endogenous control of covert attention,” Exp. Brain Res. 201, 789–796 (2010).
[Crossref]

Virsu, V.

J. Rovamo and V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[Crossref]

Wang, C. A.

C. A. Wang and D. P. Munoz, “A circuit for pupil orienting responses: implications for cognitive modulation of pupil size,” Curr. Opin. Neurobiol. 33, 134–140 (2015).
[Crossref]

Weale, R. A.

W. D. Schäfer and R. A. Weale, “The influence of age and retinal illumination on the pupillary near reflex,” Vis. Res. 10, 179–191 (1970).
[Crossref]

Weisstein, N.

J. M. Brown and N. Weisstein, “A spatial frequency effect on perceived depth,” Percept. Psychophys. 44, 157–166 (1988).
[Crossref]

Wheatley, T. P.

O. E. Kang, K. E. Huffer, and T. P. Wheatley, “Pupil dilation dynamics track attention to high-level information,” PLoS One 9, e102463 (2014).
[Crossref]

Wilhelm, H.

H. Wilhelm, “Neuro-ophthalmology of pupillary function-practical guidelines,” J. Neurol. 245, 573–583 (1998).
[Crossref]

Willenbockel, V.

V. Willenbockel, J. Sadr, D. Fiset, G. O. Horne, F. Gosselin, and J. W. Tanaka, “Controlling low-level image properties: the SHINE toolbox,” Behav. Res. Methods 42, 671–684 (2010).
[Crossref]

Wolf, J.

J. L. Barbur, J. Wolf, and P. Lennie, “Visual processing levels revealed by response latencies to changes in different visual attributes,” Proc. R. Soc. London B 265, 2321–2325 (1998).
[Crossref]

Wu, P. Y.

R. S. L. Young, B. C. Han, and P. Y. Wu, “Transient and sustained components of the pupillary responses evoked by luminance and color,” Vis. Res. 33, 437–446 (1993).
[Crossref]

Yantis, S.

J. T. Serences, J. Schwarzbach, S. M. Courtney, X. Golay, and S. Yantis, “Control of object-based attention in human cortex,” Cereb. Cortex 14, 1346–1357 (2004).
[Crossref]

Young, R. S. L.

R. S. L. Young, E. Kimura, and P. R. Delucia, “A pupillometric correlate of scotopic visual acuity,” Vis. Res. 35, 2235–2241 (1995).
[Crossref]

R. S. L. Young, B. C. Han, and P. Y. Wu, “Transient and sustained components of the pupillary responses evoked by luminance and color,” Vis. Res. 33, 437–446 (1993).
[Crossref]

R. S. L. Young and J. Kennish, “Transient and sustained components of the pupil response evoked by achromatic spatial patterns,” Vis. Res. 33, 2239–2252 (1993).
[Crossref]

Zénon, A.

R. J. Krauzlis, L. P. Lovejoy, and A. Zénon, “Superior colliculus and visual spatial attention,” Annu. Rev. Neurosci. 36, 165-182 (2013).
[Crossref]

Zhang, H. Y.

P. D. R. Gamlin, H. Y. Zhang, A. Harlow, and J. L. Barbur, “Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey,” Vis. Res. 38, 3353–3358 (1998).
[Crossref]

Am. J. Physiol. (1)

P. Binda, M. Pereverzeva, and S. O. Murray, “Pupil size reflects the focus of feature-based attention,” Am. J. Physiol. 112, 3046–3052 (2014).
[Crossref]

Annu. Rev. Neurosci. (1)

R. J. Krauzlis, L. P. Lovejoy, and A. Zénon, “Superior colliculus and visual spatial attention,” Annu. Rev. Neurosci. 36, 165-182 (2013).
[Crossref]

Arch. Disease Childhood (1)

J. Robinson and A. R. Fielder, “Pupillary diameter and reaction to light in preterm neonates,” Arch. Disease Childhood 65, 35–38 (1990).
[Crossref]

Behav. Res. Methods (2)

V. Willenbockel, J. Sadr, D. Fiset, G. O. Horne, F. Gosselin, and J. W. Tanaka, “Controlling low-level image properties: the SHINE toolbox,” Behav. Res. Methods 42, 671–684 (2010).
[Crossref]

B. Gagl, S. Hawelka, and F. Hutzler, “Systematic influence of gaze position on pupil size measurement: analysis and correction,” Behav. Res. Methods 43, 1171-1181 (2011).
[Crossref]

Br. J. Ophthalmol. (1)

C. J. Ellis, “The pupillary light reflex in normal subjects,” Br. J. Ophthalmol. 65, 754–759 (1981).
[Crossref]

Cereb. Cortex (1)

J. T. Serences, J. Schwarzbach, S. M. Courtney, X. Golay, and S. Yantis, “Control of object-based attention in human cortex,” Cereb. Cortex 14, 1346–1357 (2004).
[Crossref]

Clin. Vis. Sci. (1)

J. L. Barbur and P. M. Forsyth, “Can the pupil response be used as a measure of the visual input associated with the geniculo-striate pathway,” Clin. Vis. Sci. 1, 107–111 (1986).

Curr. Biol. (1)

J. Stoll, C. Chatelle, O. Carter, C. Koch, S. Laureys, and W. Einhäuser, “Pupil responses allow communication in locked-in syndrome patients,” Curr. Biol. 23, 647–648 (2013).
[Crossref]

Curr. Opin. Neurobiol. (1)

C. A. Wang and D. P. Munoz, “A circuit for pupil orienting responses: implications for cognitive modulation of pupil size,” Curr. Opin. Neurobiol. 33, 134–140 (2015).
[Crossref]

Dev. Cogn. Neurosci. (1)

M. K. Eckstein, B. G. Carrillo, A. T. M. Singley, and S. A. Bunge, “Beyond eye gaze: what else can eyetracking reveal about cognition and cognitive development?” Dev. Cogn. Neurosci. 25, 69-91 (2017).
[Crossref]

Dev. Med. Child Neurol. (1)

K. D. Cocker, M. J. Moseley, H. F. Stirling, and A. R. Fielder, “Delayed visual maturation: pupillary responses implicate subcortical and cortical visual systems,” Dev. Med. Child Neurol. 40, 160–162 (1998).
[Crossref]

Exp. Brain Res. (2)

C. Hickey, W. van Zoest, and J. Theeuwes, “The time course of exogenous and endogenous control of covert attention,” Exp. Brain Res. 201, 789–796 (2010).
[Crossref]

J. Rovamo and V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

O. Bergamin and R. H. Kardon, “Latency of the pupil light reflex: sample rate, stimulus intensity, and variation in normal subjects,” Invest. Ophthalmol. Vis. Sci. 44, 1546–1554 (2003).
[Crossref]

Invest. Ophthalmol. Visual Sci. (2)

K. D. Cocker, M. J. Moseley, J. G. Bissenden, and A. R. Fielder, “Visual acuity and pupillary responses to spatial structure in infants,” Invest. Ophthalmol. Visual Sci. 35, 2620–2625 (1994).

J. Slooter and D. V. Norren, “Visual acuity measured with pupil responses to checkerboard stimuli,” Invest. Ophthalmol. Visual Sci. 19, 105–108 (1980).

J. Neurol. (1)

H. Wilhelm, “Neuro-ophthalmology of pupillary function-practical guidelines,” J. Neurol. 245, 573–583 (1998).
[Crossref]

J. Neurophysiol. (1)

P. H. Schiller, J. G. Malpeli, and S. J. Schein, “Composition of geniculostriate input to superior colliculus of the rhesus monkey,” J. Neurophysiol. 42, 1124–1133 (1979).
[Crossref]

J. Neurosci. (1)

P. Binda, M. Pereverzeva, and S. O. Murray, “Attention to bright surfaces enhances the pupillary light reflex,” J. Neurosci. 33, 2199–2204 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Vis. (1)

P. Binda, M. Pereverzeva, and S. O. Murray, “Pupil constrictions to photographs of the sun,” J. Vis. 13(6), 8 (2013).
[Crossref]

Math. Comp. (1)

R. L. Dougherty, A. S. Edelman, and J. M. Hyman, “Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation,” Math. Comp. 52, 471–494 (1989).
[Crossref]

Ophthalmic Physiolog. Opt. (4)

K. Tsuchiya, K. Ukai, and S. Ishikawa, “A quasistatic study of pupil and accommodation after-effects following near vision,” Ophthalmic Physiolog. Opt. 9, 385–391 (1989).
[Crossref]

K. D. Cocker and M. J. Moseley, “Development of pupillary responses to grating stimuli,” Ophthalmic Physiolog. Opt. 16, 64–67 (1996).
[Crossref]

J. L. Barbur and W. D. Thomson, “Pupil response as an objective measure of visual acuity,” Ophthalmic Physiolog. Opt. 7, 425–429 (1987).
[Crossref]

J. L. Barbur, A. J. Harlow, and A. Sahraie, “Pupillary responses to stimulus structure, color and movement,” Ophthalmic Physiolog. Opt. 12, 137–141 (1992).
[Crossref]

Optometry Vis. Sci. (1)

T. Takeda, Y. Lida, and Y. Fukui, “Dynamic eye accommodation evoked by apparent distances,” Optometry Vis. Sci. 67, 450–455 (1990).
[Crossref]

Percep. Psychophys. (1)

F. V. Malmstrom and R. J. Randle, “Effects of visual imagery on the accommodation response,” Percep. Psychophys. 19, 450–453 (1976).
[Crossref]

Percept. Psychophys. (1)

J. M. Brown and N. Weisstein, “A spatial frequency effect on perceived depth,” Percept. Psychophys. 44, 157–166 (1988).
[Crossref]

Perception (1)

J. T. Enright, “Art and the oculomotor system: perspective illustrations evoke vergence changes,” Perception 16, 731–746 (1987).
[Crossref]

Perceptual Motor Skills (1)

J. M. Brown and C. Koch, “Influences of occlusion, color, and luminance on the perception of fragmented pictures,” Perceptual Motor Skills 90, 1033–1044 (2000).
[Crossref]

PLoS One (2)

O. E. Kang, K. E. Huffer, and T. P. Wheatley, “Pupil dilation dynamics track attention to high-level information,” PLoS One 9, e102463 (2014).
[Crossref]

S. Mathôt, J. B. Melmi, L. van der Linden, and S. Van der Stigchel, “The mind-writing pupil: a human-computer interface based on decoding of covert attention through pupillometry,” PLoS One 11, 1–15 (2016).
[Crossref]

Proc. R. Soc. London B (1)

J. L. Barbur, J. Wolf, and P. Lennie, “Visual processing levels revealed by response latencies to changes in different visual attributes,” Proc. R. Soc. London B 265, 2321–2325 (1998).
[Crossref]

Psychol. Sci. (1)

B. Laeng and U. Sulutvedt, “The eye pupil adjusts to imaginary light,” Psychol. Sci. 25, 188–197 (2014).
[Crossref]

Psychophysiology (1)

J. Klingner, B. Tversky, and P. Hanrahan, “Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks,” Psychophysiology 48, 323–332 (2011).
[Crossref]

Spat. Vis. (1)

D. G. Pelli, “Pixel independence: measuring spatial interactions on a CRT display,” Spat. Vis. 10, 443-446 (1997).
[Crossref]

Vis. Res. (6)

W. D. Schäfer and R. A. Weale, “The influence of age and retinal illumination on the pupillary near reflex,” Vis. Res. 10, 179–191 (1970).
[Crossref]

R. S. L. Young, E. Kimura, and P. R. Delucia, “A pupillometric correlate of scotopic visual acuity,” Vis. Res. 35, 2235–2241 (1995).
[Crossref]

R. S. L. Young, B. C. Han, and P. Y. Wu, “Transient and sustained components of the pupillary responses evoked by luminance and color,” Vis. Res. 33, 437–446 (1993).
[Crossref]

R. S. L. Young and J. Kennish, “Transient and sustained components of the pupil response evoked by achromatic spatial patterns,” Vis. Res. 33, 2239–2252 (1993).
[Crossref]

M. Carrasco, “Visual attention: the past 25 years,” Vis. Res. 51,1484–1525 (2011).
[Crossref]

P. D. R. Gamlin, H. Y. Zhang, A. Harlow, and J. L. Barbur, “Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey,” Vis. Res. 38, 3353–3358 (1998).
[Crossref]

Other (3)

I. E. Loewenfeld, The Pupil: Anatomy, Physiology and Clinical Applications (Iowa State University, 1993)

K. Matsuda, T. Nagami, Y. Sugase, A. Takemura, and K. Kawano, “A widely applicable real-time mono/binocular eye tracking system using a high frame-rate digital camera,” in International Conference on Human-Computer Interaction (Springer, 2017), 593–608.

P. L. Kaufman, L. A. Levin, F. H. Adler, and A. Alm, Adler’s Physiology of the Eye (Elsevier Health Sciences, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Time course of stimulus presentation in two trials of Experiment 1. The top panels show an example of the stimulus sequence in a trial of the sine wave grating with a sharp edge, and the bottom panels show an example with a Gaussian envelope (Gabor patch). For illustrative purposes, the stimulus changed twice in this trial. Each trial began with a presentation of a fixation dot for 2 s after which the stimulus with a randomly chosen orientation and spatial frequency was presented. The orientation of the stimulus changed 1.5 s later. Another 1.5 s later, the orientation of the stimulus changed again. Then, after 1 s, the stimulus was replaced by a white noise mask. Note that the white noise mask was reorganized to see it clearly in this paper.
Fig. 2.
Fig. 2. Typical pupillary response as a function of time. This is one example of averaged pupillary response. A positive value indicates dilation, and a negative value indicates constriction. Two parameters were calculated in Experiment 1: maximum constriction and mean pupil change. Both parameters used in the analysis were normalized by subtracting the baseline size and then dividing it by the baseline. Refer to the text for details.
Fig. 3.
Fig. 3. Results of Experiment 1. The change of pupil size is plotted along the ordinate (in %) as a function of spatial frequency along the abscissa (in c/d). The line styles and symbol shapes of the plot represents the eccentricity of the stimulus: dashed rectangle—0°, dotted triangle—5°, and solid round—8° of eccentricity. Panels A and B show the results of maximum constriction, and panels C and D show mean pupil change. Panels A and C are the results for the sine wave grating, and panels B and D are the results for the Gabor patch. The error bars represent standard error of the means across four participants.
Fig. 4.
Fig. 4. Time course of stimulus presentation in two trials of Experiment 2. The top panels show a trial using sine wave grating and the bottom panels using the Gabor patch. Each trial began with the presentation of a fixation with an attentional cue for 2 s. The left or right line indicated participants should shift attention leftward or rightward, and no line indicated they should not shift attention. After the cue presentation, stimuli with low (0.54 c/d) and high (5.57 c/d) spatial frequency were presented in the left and right hemifields. In these examples, the orientation of the object in the cued side rotated twice. Finally, the stimuli were replaced by a white noise mask. Note that the white noise mask was reorganized to see it clearly in this paper. Participants were to respond “2” in this example. They could have a break during this period. Once they pressed the keyboard, the next trial began.
Fig. 5.
Fig. 5. Results of Experiment 2. The abscissa represents the stimulus property participants were instructed to attend to, low (0.54 c/d) frequency stimulus, high (5.57 c/d) frequency stimulus, and fixation. The ordinate represents the pupil diameter ratio relative to the baseline for maximum constriction (panels A and B) and mean pupil change (panels C and D). Panels A and C are the results for the sine wave grating, and panels B and D are the results for the Gabor patch. The error bars represent standard error of the means across five participants.
Fig. 6.
Fig. 6. Stimuli used in Experiments 3a and 3b. Panel A represents four kinds of single objects: pineapple, rabbit, watermelon, and turtle. Each of them was both low-pass and high-pass filtered. Panel B represents four kinds of combined images. Each of them was a combination of the low-pass and the high-pass filtered images. Refer to the text for details.
Fig. 7.
Fig. 7. Time course of stimulus presentation in a trial of Experiments 3a (top panels) and 3b (bottom panels). In both experiments, the fixation or cue was presented for 2 s at first. Then, the stimulus was presented for 4 s. Participants were asked to look at the presented object or attend to the cued object during this period. Finally, the stimulus was replaced by a white noise mask. Note that the cue and white noise mask were reorganized to see them clearly in this paper. Participants were required to respond to the type of the object, animal or plant, and could have a break. Once they pressed the keyboard, the next trial began. Refer to the text for details.
Fig. 8.
Fig. 8. Results of Experiment 3. The averaged proportion of maximum constriction (top panels) and that of mean pupil change (bottom panels): A for every single image presented in Experiment 3a, and B for combined images presented in Experiment 3b. In A, the abscissa represents two types of filters, and in B it represents the filter type of the attended images. The error bars represent standard error of the means across six participants.