A. Martinez-Finkelshtein, D. Ramos-Lopez, and D. Iskander, “Computation of 2D Fourier transforms and diffraction integrals using Gaussian radial basis functions,” Appl. Comput. Harmon. Anal. 43, 424–448 (2017).

[Crossref]

M. Maksimovic, “Optical design and tolerancing of freeform surfaces using anisotropic radial basis functions,” Opt. Eng. 55, 071203 (2016).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).

[Crossref]

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).

[Crossref]

I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, maxcut and complex semidefinite programming,” Math. Program. 149, 47–81 (2015).

[Crossref]

J. Antonello and M. Verhaegen, “Modal-based phase retrieval for adaptive optics,” J. Opt. Soc. Am. A 32, 1160–1170 (2015).

[Crossref]

B. Fornberg, E. Larsson, and N. Flyer, “Stable computations with Gaussian radial basis functions,” SIAM J. Sci. Comput. 33, 869–892 (2011).

[Crossref]

D. R. Luke, J. V. Burke, and R. G. Lyon, “Optical wavefront reconstruction: theory and numerical methods,” SIAM Rev. 44, 169–224 (2002).

[Crossref]

A. J. Janssen, “Extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 849–857 (2002).

[Crossref]

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization,” J. Opt. Soc. Am. A 19, 1334–1345 (2002).

[Crossref]

M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41, 7437–7444 (2002).

[Crossref]

L. Kocis and W. J. Whiten, “Computational investigations of low-discrepancy sequences,” ACM Trans. Math. Softw. 23, 266–294 (1997).

[Crossref]

R. W. Gerchberg, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

D. R. Luke, J. V. Burke, and R. G. Lyon, “Optical wavefront reconstruction: theory and numerical methods,” SIAM Rev. 44, 169–224 (2002).

[Crossref]

Y. Chen and E. Candes, “Solving random quadratic systems of equations is nearly as easy as solving linear systems,” in Advances in Neural Information Processing Systems (2015), pp. 739–747.

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).

[Crossref]

Y. Chen and E. Candes, “Solving random quadratic systems of equations is nearly as easy as solving linear systems,” in Advances in Neural Information Processing Systems (2015), pp. 739–747.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).

[Crossref]

I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, maxcut and complex semidefinite programming,” Math. Program. 149, 47–81 (2015).

[Crossref]

R. Doelman, H. T. Nguyen, and M. Verhaegen, “Solving large-scale general phase retrieval problems via a sequence of convex relaxations,” arXiv:1803.02652 (2018).

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).

[Crossref]

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).

[Crossref]

B. Fornberg, E. Larsson, and N. Flyer, “Stable computations with Gaussian radial basis functions,” SIAM J. Sci. Comput. 33, 869–892 (2011).

[Crossref]

B. Fornberg, E. Larsson, and N. Flyer, “Stable computations with Gaussian radial basis functions,” SIAM J. Sci. Comput. 33, 869–892 (2011).

[Crossref]

R. W. Gerchberg, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

A. Martinez-Finkelshtein, D. Ramos-Lopez, and D. Iskander, “Computation of 2D Fourier transforms and diffraction integrals using Gaussian radial basis functions,” Appl. Comput. Harmon. Anal. 43, 424–448 (2017).

[Crossref]

L. Kocis and W. J. Whiten, “Computational investigations of low-discrepancy sequences,” ACM Trans. Math. Softw. 23, 266–294 (1997).

[Crossref]

B. Fornberg, E. Larsson, and N. Flyer, “Stable computations with Gaussian radial basis functions,” SIAM J. Sci. Comput. 33, 869–892 (2011).

[Crossref]

D. R. Luke, J. V. Burke, and R. G. Lyon, “Optical wavefront reconstruction: theory and numerical methods,” SIAM Rev. 44, 169–224 (2002).

[Crossref]

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization,” J. Opt. Soc. Am. A 19, 1334–1345 (2002).

[Crossref]

D. R. Luke, J. V. Burke, and R. G. Lyon, “Optical wavefront reconstruction: theory and numerical methods,” SIAM Rev. 44, 169–224 (2002).

[Crossref]

M. Maksimovic, “Optical design and tolerancing of freeform surfaces using anisotropic radial basis functions,” Opt. Eng. 55, 071203 (2016).

[Crossref]

I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, maxcut and complex semidefinite programming,” Math. Program. 149, 47–81 (2015).

[Crossref]

A. Martinez-Finkelshtein, D. Ramos-Lopez, and D. Iskander, “Computation of 2D Fourier transforms and diffraction integrals using Gaussian radial basis functions,” Appl. Comput. Harmon. Anal. 43, 424–448 (2017).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).

[Crossref]

R. Doelman, H. T. Nguyen, and M. Verhaegen, “Solving large-scale general phase retrieval problems via a sequence of convex relaxations,” arXiv:1803.02652 (2018).

A. Martinez-Finkelshtein, D. Ramos-Lopez, and D. Iskander, “Computation of 2D Fourier transforms and diffraction integrals using Gaussian radial basis functions,” Appl. Comput. Harmon. Anal. 43, 424–448 (2017).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).

[Crossref]

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).

[Crossref]

S. Van Haver, “The extended Nijboer–Zernike diffraction theory and its applications,” Ph.D. thesis (Delft University of Technology, 2010).

M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares Approach (Cambridge University, 2007).

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).

[Crossref]

I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, maxcut and complex semidefinite programming,” Math. Program. 149, 47–81 (2015).

[Crossref]

L. Kocis and W. J. Whiten, “Computational investigations of low-discrepancy sequences,” ACM Trans. Math. Softw. 23, 266–294 (1997).

[Crossref]

L. Kocis and W. J. Whiten, “Computational investigations of low-discrepancy sequences,” ACM Trans. Math. Softw. 23, 266–294 (1997).

[Crossref]

A. Martinez-Finkelshtein, D. Ramos-Lopez, and D. Iskander, “Computation of 2D Fourier transforms and diffraction integrals using Gaussian radial basis functions,” Appl. Comput. Harmon. Anal. 43, 424–448 (2017).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32(3), 87–109 (2015).

[Crossref]

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization,” J. Opt. Soc. Am. A 19, 1334–1345 (2002).

[Crossref]

J. Antonello and M. Verhaegen, “Modal-based phase retrieval for adaptive optics,” J. Opt. Soc. Am. A 32, 1160–1170 (2015).

[Crossref]

A. J. Janssen, “Extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 849–857 (2002).

[Crossref]

I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, maxcut and complex semidefinite programming,” Math. Program. 149, 47–81 (2015).

[Crossref]

M. Maksimovic, “Optical design and tolerancing of freeform surfaces using anisotropic radial basis functions,” Opt. Eng. 55, 071203 (2016).

[Crossref]

R. W. Gerchberg, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

B. Fornberg, E. Larsson, and N. Flyer, “Stable computations with Gaussian radial basis functions,” SIAM J. Sci. Comput. 33, 869–892 (2011).

[Crossref]

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).

[Crossref]

D. R. Luke, J. V. Burke, and R. G. Lyon, “Optical wavefront reconstruction: theory and numerical methods,” SIAM Rev. 44, 169–224 (2002).

[Crossref]

Y. Chen and E. Candes, “Solving random quadratic systems of equations is nearly as easy as solving linear systems,” in Advances in Neural Information Processing Systems (2015), pp. 739–747.

S. Van Haver, “The extended Nijboer–Zernike diffraction theory and its applications,” Ph.D. thesis (Delft University of Technology, 2010).

Boston Micromachines Corporation, 2018, http://www.bmc.bostonmicromachines.com/pdf/Kilo-DM.pdf .

M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares Approach (Cambridge University, 2007).

R. Doelman, H. T. Nguyen, and M. Verhaegen, “Solving large-scale general phase retrieval problems via a sequence of convex relaxations,” arXiv:1803.02652 (2018).