Abstract

We propose a scattering-type nano-polarimeter for probing the local spin density with subwavelength spatial resolution via the spin-orbital interactions at the nanoscale. The nano-polarimeter is simple to operate and can be applied to a variety of asymmetric nanoprobes, allowing direct data retrieval using two point detectors. Moreover, this technique is not limited to the spin-density detection but can also be used for the measurement of any given polarization states of light, no matter whether it is a free-space propagating wave or nonpropagating wave bound in the near-field region of nanostructures.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Probing vectorial near field of light: imaging theory and design principles of nanoprobes

Lin Sun, Benfeng Bai, and Jia Wang
Opt. Express 26(14) 18644-18663 (2018)

Rotational Doppler shift induced by spin-orbit coupling of light at spinning metasurfaces

Philip Georgi, Christian Schlickriede, Guixin Li, Shuang Zhang, and Thomas Zentgraf
Optica 4(8) 1000-1005 (2017)

Superresolution imaging of the local density of states in plasmon lattices

Ke Guo, Marc A. Verschuuren, and A. Femius Koenderink
Optica 3(3) 289-298 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref]
  2. K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
    [Crossref]
  3. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett. 34, 1240–1242 (2009).
    [Crossref]
  4. M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).
    [Crossref]
  5. M. Schaferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20, 26326–26336 (2012).
    [Crossref]
  6. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
    [Crossref]
  7. Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
    [Crossref]
  8. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
    [Crossref]
  9. A. Singh, G. Calbris, and V. H. Nf, “Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles,” Nano Lett. 14, 4715–4723 (2014).
    [Crossref]
  10. T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2013).
    [Crossref]
  11. A. Espinosa-Soria, F. J. Rodriguez-Fortuno, A. Griol, and A. Martinez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
    [Crossref]
  12. S. K. Rhodes, K. A. Nugent, and A. Roberts, “Precision measurement of the electromagnetic fields in the focal region of a high-numerical-aperture lens using a tapered fiber probe,” J. Opt. Soc. Am. A 19, 1689–1693 (2002).
    [Crossref]
  13. M. Schnell, A. Garciaetxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
    [Crossref]
  14. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
    [Crossref]
  15. M. Burresi, R. J. P. Engelen, A. Opheij, D. Van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
    [Crossref]
  16. M. Zhao, S. Wei, and Z. Yang, “Design of ultracompact polarimeters based on dielectric metasurfaces,” Opt. Lett. 42, 1580–1583 (2017).
    [Crossref]
  17. M. Burresi, D. Van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
    [Crossref]
  18. D. Denkova, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
    [Crossref]
  19. B. L. Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2014).
    [Crossref]
  20. N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
    [Crossref]
  21. D. P. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett. 102, 123903 (2009).
    [Crossref]
  22. O. G. Rodriguezherrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
    [Crossref]
  23. M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2014).
    [Crossref]
  24. M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
    [Crossref]
  25. C. F. Bohren and D. R. Huffman, “Wiley: Absorption and scattering of light by small particles—Craig F. Bohren, Donald R. Huffman,” J. Mod. Opt. 31, 328 (1999).
  26. S. M. Hein and H. Giessen, “Retardation-induced phase singularities in coupled plasmonic oscillators,” Phys. Rev. B 91, 205402 (2015).
    [Crossref]
  27. P. Gaybalmaz and O. J. F. Martin, “A library for computing the filtered and non-filtered 3D Green’s tensor associated with infinite homogeneous space and surfaces,” Comput. Phys. Commun. 144, 111–120 (2002).
    [Crossref]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  29. B. L. Feber, N. Rotenberg, and L. Kuipers, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
    [Crossref]
  30. B. L. Feber, L. Kuipers, N. Rotenberg, and T. D. Visser, “Tracking nanoscale electric and magnetic singularities through three-dimensional space,” Optica 2, 540–545 (2015).
    [Crossref]
  31. T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
    [Crossref]
  32. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).
    [Crossref]
  33. C. Yan, X. Wang, T. V. Raziman, and O. J. F. Martin, “Twisting fluorescence through extrinsic chiral antennas,” Nano Lett. 17, 2265–2272 (2017).
    [Crossref]

2018 (1)

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
[Crossref]

2017 (3)

C. Yan, X. Wang, T. V. Raziman, and O. J. F. Martin, “Twisting fluorescence through extrinsic chiral antennas,” Nano Lett. 17, 2265–2272 (2017).
[Crossref]

A. Espinosa-Soria, F. J. Rodriguez-Fortuno, A. Griol, and A. Martinez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref]

M. Zhao, S. Wei, and Z. Yang, “Design of ultracompact polarimeters based on dielectric metasurfaces,” Opt. Lett. 42, 1580–1583 (2017).
[Crossref]

2015 (3)

B. L. Feber, N. Rotenberg, and L. Kuipers, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref]

B. L. Feber, L. Kuipers, N. Rotenberg, and T. D. Visser, “Tracking nanoscale electric and magnetic singularities through three-dimensional space,” Optica 2, 540–545 (2015).
[Crossref]

S. M. Hein and H. Giessen, “Retardation-induced phase singularities in coupled plasmonic oscillators,” Phys. Rev. B 91, 205402 (2015).
[Crossref]

2014 (4)

B. L. Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2014).
[Crossref]

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
[Crossref]

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2014).
[Crossref]

A. Singh, G. Calbris, and V. H. Nf, “Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles,” Nano Lett. 14, 4715–4723 (2014).
[Crossref]

2013 (2)

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2013).
[Crossref]

D. Denkova, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
[Crossref]

2012 (2)

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).
[Crossref]

M. Schaferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20, 26326–26336 (2012).
[Crossref]

2011 (1)

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
[Crossref]

2010 (4)

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

M. Schnell, A. Garciaetxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

O. G. Rodriguezherrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).
[Crossref]

2009 (4)

D. P. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett. 102, 123903 (2009).
[Crossref]

M. Burresi, D. Van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett. 34, 1240–1242 (2009).
[Crossref]

M. Burresi, R. J. P. Engelen, A. Opheij, D. Van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[Crossref]

2007 (1)

K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
[Crossref]

2003 (1)

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

2002 (3)

S. K. Rhodes, K. A. Nugent, and A. Roberts, “Precision measurement of the electromagnetic fields in the focal region of a high-numerical-aperture lens using a tapered fiber probe,” J. Opt. Soc. Am. A 19, 1689–1693 (2002).
[Crossref]

P. Gaybalmaz and O. J. F. Martin, “A library for computing the filtered and non-filtered 3D Green’s tensor associated with infinite homogeneous space and surfaces,” Comput. Phys. Commun. 144, 111–120 (2002).
[Crossref]

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[Crossref]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

1999 (1)

C. F. Bohren and D. R. Huffman, “Wiley: Absorption and scattering of light by small particles—Craig F. Bohren, Donald R. Huffman,” J. Mod. Opt. 31, 328 (1999).

1994 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Aiello, A.

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2014).
[Crossref]

Aizpurua, J.

M. Schnell, A. Garciaetxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

Alkorta, J.

M. Schnell, A. Garciaetxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

Anderson, A.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).
[Crossref]

Baba, T.

M. Burresi, R. J. P. Engelen, A. Opheij, D. Van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[Crossref]

Banzer, P.

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
[Crossref]

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2014).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2013).
[Crossref]

Bartels, R. A.

Bauer, T.

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
[Crossref]

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2014).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2013).
[Crossref]

Beggs, D. M.

B. L. Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2014).
[Crossref]

Beversluis, M. R.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Bliokh, K. Y.

O. G. Rodriguezherrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, “Wiley: Absorption and scattering of light by small particles—Craig F. Bohren, Donald R. Huffman,” J. Mod. Opt. 31, 328 (1999).

Bouhelier, A.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Burresi, M.

M. Burresi, R. J. P. Engelen, A. Opheij, D. Van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[Crossref]

M. Burresi, D. Van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref]

Calbris, G.

A. Singh, G. Calbris, and V. H. Nf, “Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles,” Nano Lett. 14, 4715–4723 (2014).
[Crossref]

Choi, S.

K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
[Crossref]

Choi, W. J.

K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

Dainty, C.

O. G. Rodriguezherrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]

Denkova, D.

D. Denkova, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
[Crossref]

Deryckx, K. S.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).
[Crossref]

Dogariu, A.

D. P. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett. 102, 123903 (2009).
[Crossref]

Dregely, D.

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).
[Crossref]

Eismann, J. S.

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
[Crossref]

Engelen, R. J. P.

M. Burresi, R. J. P. Engelen, A. Opheij, D. Van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[Crossref]

Espinosa-Soria, A.

A. Espinosa-Soria, F. J. Rodriguez-Fortuno, A. Griol, and A. Martinez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref]

Feber, B. L.

B. L. Feber, N. Rotenberg, and L. Kuipers, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref]

B. L. Feber, L. Kuipers, N. Rotenberg, and T. D. Visser, “Tracking nanoscale electric and magnetic singularities through three-dimensional space,” Optica 2, 540–545 (2015).
[Crossref]

B. L. Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2014).
[Crossref]

Friberg, A. T.

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[Crossref]

Garciaetxarri, A.

M. Schnell, A. Garciaetxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

Gaybalmaz, P.

P. Gaybalmaz and O. J. F. Martin, “A library for computing the filtered and non-filtered 3D Green’s tensor associated with infinite homogeneous space and surfaces,” Comput. Phys. Commun. 144, 111–120 (2002).
[Crossref]

Giessen, H.

S. M. Hein and H. Giessen, “Retardation-induced phase singularities in coupled plasmonic oscillators,” Phys. Rev. B 91, 205402 (2015).
[Crossref]

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).
[Crossref]

M. Schaferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20, 26326–26336 (2012).
[Crossref]

Griol, A.

A. Espinosa-Soria, F. J. Rodriguez-Fortuno, A. Griol, and A. Martinez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref]

Haefner, D. P.

D. P. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett. 102, 123903 (2009).
[Crossref]

Heideman, R.

M. Burresi, D. Van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref]

Hein, S. M.

S. M. Hein and H. Giessen, “Retardation-induced phase singularities in coupled plasmonic oscillators,” Phys. Rev. B 91, 205402 (2015).
[Crossref]

Hell, S. W.

Hentschel, M.

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).
[Crossref]

Hillenbrand, R.

M. Schnell, A. Garciaetxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, “Wiley: Absorption and scattering of light by small particles—Craig F. Bohren, Donald R. Huffman,” J. Mod. Opt. 31, 328 (1999).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kaivola, M.

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[Crossref]

Kampfrath, T.

M. Burresi, D. Van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref]

Kihm, H. W.

K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
[Crossref]

Kihm, J.

K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
[Crossref]

Kim, H.

K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
[Crossref]

Kuipers, L.

B. L. Feber, N. Rotenberg, and L. Kuipers, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref]

B. L. Feber, L. Kuipers, N. Rotenberg, and T. D. Visser, “Tracking nanoscale electric and magnetic singularities through three-dimensional space,” Optica 2, 540–545 (2015).
[Crossref]

B. L. Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2014).
[Crossref]

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
[Crossref]

M. Burresi, D. Van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref]

M. Burresi, R. J. P. Engelen, A. Opheij, D. Van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[Crossref]

Lara, D.

O. G. Rodriguezherrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]

Lee, K.

K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
[Crossref]

Leinse, A.

M. Burresi, D. Van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref]

Leuchs, G.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2013).
[Crossref]

Martin, O. J. F.

C. Yan, X. Wang, T. V. Raziman, and O. J. F. Martin, “Twisting fluorescence through extrinsic chiral antennas,” Nano Lett. 17, 2265–2272 (2017).
[Crossref]

P. Gaybalmaz and O. J. F. Martin, “A library for computing the filtered and non-filtered 3D Green’s tensor associated with infinite homogeneous space and surfaces,” Comput. Phys. Commun. 144, 111–120 (2002).
[Crossref]

Martinez, A.

A. Espinosa-Soria, F. J. Rodriguez-Fortuno, A. Griol, and A. Martinez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref]

Masihzadeh, O.

Mori, D.

M. Burresi, R. J. P. Engelen, A. Opheij, D. Van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[Crossref]

Neugebauer, M.

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
[Crossref]

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2014).
[Crossref]

Nf, V. H.

A. Singh, G. Calbris, and V. H. Nf, “Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles,” Nano Lett. 14, 4715–4723 (2014).
[Crossref]

Novotny, L.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Nugent, K. A.

Opheij, A.

M. Burresi, R. J. P. Engelen, A. Opheij, D. Van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[Crossref]

Orlov, S.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2013).
[Crossref]

Ostrovskaya, E. A.

O. G. Rodriguezherrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]

Park, D. J.

K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
[Crossref]

Peschel, U.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2013).
[Crossref]

Raschke, M. B.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).
[Crossref]

Raziman, T. V.

C. Yan, X. Wang, T. V. Raziman, and O. J. F. Martin, “Twisting fluorescence through extrinsic chiral antennas,” Nano Lett. 17, 2265–2272 (2017).
[Crossref]

Rhodes, S. K.

Roberts, A.

Rodriguez-Fortuno, F. J.

A. Espinosa-Soria, F. J. Rodriguez-Fortuno, A. Griol, and A. Martinez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref]

Rodriguezherrera, O. G.

O. G. Rodriguezherrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]

Ropers, C.

K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
[Crossref]

Rotenberg, N.

B. L. Feber, N. Rotenberg, and L. Kuipers, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref]

B. L. Feber, L. Kuipers, N. Rotenberg, and T. D. Visser, “Tracking nanoscale electric and magnetic singularities through three-dimensional space,” Optica 2, 540–545 (2015).
[Crossref]

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
[Crossref]

B. L. Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2014).
[Crossref]

Schaferling, M.

M. Schaferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20, 26326–26336 (2012).
[Crossref]

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).
[Crossref]

Schlup, P.

Schnell, M.

M. Schnell, A. Garciaetxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

Schoenmaker, H.

M. Burresi, D. Van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref]

Setala, T.

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[Crossref]

Shevchenko, A.

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[Crossref]

Singh, A.

A. Singh, G. Calbris, and V. H. Nf, “Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles,” Nano Lett. 14, 4715–4723 (2014).
[Crossref]

Steinmeyer, G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).
[Crossref]

Sukhov, S.

D. P. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett. 102, 123903 (2009).
[Crossref]

Tang, Y.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

Van Oosten, D.

M. Burresi, R. J. P. Engelen, A. Opheij, D. Van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[Crossref]

M. Burresi, D. Van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref]

Visser, T. D.

Wang, X.

C. Yan, X. Wang, T. V. Raziman, and O. J. F. Martin, “Twisting fluorescence through extrinsic chiral antennas,” Nano Lett. 17, 2265–2272 (2017).
[Crossref]

Wei, S.

Wichmann, J.

Woo, D. H.

K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
[Crossref]

Xu, X. G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).
[Crossref]

Yan, C.

C. Yan, X. Wang, T. V. Raziman, and O. J. F. Martin, “Twisting fluorescence through extrinsic chiral antennas,” Nano Lett. 17, 2265–2272 (2017).
[Crossref]

Yang, Z.

Yin, X.

Yoon, Y. C.

K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
[Crossref]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Zhao, M.

ACS Nano (1)

D. Denkova, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
[Crossref]

Appl. Phys. Lett. (1)

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

Comput. Phys. Commun. (1)

P. Gaybalmaz and O. J. F. Martin, “A library for computing the filtered and non-filtered 3D Green’s tensor associated with infinite homogeneous space and surfaces,” Comput. Phys. Commun. 144, 111–120 (2002).
[Crossref]

J. Mod. Opt. (1)

C. F. Bohren and D. R. Huffman, “Wiley: Absorption and scattering of light by small particles—Craig F. Bohren, Donald R. Huffman,” J. Mod. Opt. 31, 328 (1999).

J. Opt. Soc. Am. A (1)

Nano Lett. (5)

M. Schnell, A. Garciaetxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

A. Singh, G. Calbris, and V. H. Nf, “Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles,” Nano Lett. 14, 4715–4723 (2014).
[Crossref]

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).
[Crossref]

C. Yan, X. Wang, T. V. Raziman, and O. J. F. Martin, “Twisting fluorescence through extrinsic chiral antennas,” Nano Lett. 17, 2265–2272 (2017).
[Crossref]

A. Espinosa-Soria, F. J. Rodriguez-Fortuno, A. Griol, and A. Martinez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref]

Nat. Commun. (1)

B. L. Feber, N. Rotenberg, and L. Kuipers, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref]

Nat. Photonics (4)

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8, 23–27 (2013).
[Crossref]

K. Lee, H. W. Kihm, J. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007).
[Crossref]

B. L. Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2014).
[Crossref]

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Optica (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

S. M. Hein and H. Giessen, “Retardation-induced phase singularities in coupled plasmonic oscillators,” Phys. Rev. B 91, 205402 (2015).
[Crossref]

Phys. Rev. E (1)

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[Crossref]

Phys. Rev. Lett. (6)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref]

D. P. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett. 102, 123903 (2009).
[Crossref]

O. G. Rodriguezherrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2014).
[Crossref]

M. Burresi, R. J. P. Engelen, A. Opheij, D. Van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[Crossref]

Phys. Rev. X (2)

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, “Magnetic and electric transverse spin density of spatially confined light,” Phys. Rev. X 8, 021042 (2018).
[Crossref]

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 031010 (2012).
[Crossref]

Science (2)

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
[Crossref]

M. Burresi, D. Van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Principle of the scattering-type nano-polarimeter. (a) Scheme of the spin density measurement. The inset shows the polarization operation module. (b) and (c) Scattering patterns by a T-shaped probe illuminated with different spin states.
Fig. 2.
Fig. 2. Principle of the dark-spot elimination technique. (a1)–(a4) show the original scattering pattern of a T-shaped probe Se+1, the intermediate state of dark-spot construction TQWPSe+1, the final result of dark-spot construction TLP,+1TQWPSe+1, and the result for TLP,1TQWPSe+1, respectively. (b1)–(b4) are the corresponding cases for e1. The red and blue lines illustrate the polarization of the scattering fields.
Fig. 3.
Fig. 3. Numerical verification using a realistic T-shaped probe. (a1)–(a4) are the results of Se+1, TQWPSe+1, TLP,+1TQWPSe+1, and TLP,1TQWPSe+1, respectively. (b1)–(b4) are the results for e1. (c1)–(c4) show the simulated dark-spot elimination process for the case of Eillu=e+1+e1. At spots A and B, the amplitude of e+1 and e1 components can be directly retrieved. The line plots illustrate the polarization states of the scattering fields.
Fig. 4.
Fig. 4. Spin-dependent scattering patterns of (a) T-shaped nanoprobe, (b) nano-triangle, and (c) nanodisk.
Fig. 5.
Fig. 5. Proposed scheme for polarization measurement on the surface of a photonic nanodevice.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Esca,σ(θ,ϕ)=S(θ,ϕ)eσ,
Esca=SEinc=σcσEsca,σ.
Tpol,+1Esca,+1(u+1)=0,Tpol,1Esca,1(u1)=0,
Tpol,+1Esca(u+1)=c1Tpol,+1Esca,1(u+1),Tpol,1Esca(u1)=c+1Tpol,1Esca,+1(u1).
Isca(u+1)=|Tpol,+1Esca(u+1)|2=c12Ipol,+1(u+1),Isca(u1)=|Tpol,1Esca(u1)|2==c+12Ipol,1(u1).
p=αEinc.
Esca(r)=i=1,2G(r,ri)p(ri).
Isca(u+1)=c12Ipol,+1(u+1),Isca(u1)=c+12Ipol,1(u1).
cσ2=Isca(uσ)+δIsca(uσ)Ipol,σ(uσ)+δIpol,σ(uσ),cσ2=Isca(uσ)Ipol,σ(uσ)(1+δIsca(uσ)Isca(uσ)δIpol,σ(uσ)Ipol,σ(uσ)).
δcσ2=Isca(uσ)Ipol,σ(uσ)(δIsca(uσ)Isca(uσ)δIpol,σ(uσ)Ipol,σ(uσ)).
Tpol,1Esca,1(u1)=0,Tpol,2Esca,2(u2)=0,
Esca(r)=iciSei.
Est(r)=Es1(r)+Es2(r).
Es,i(r)=ω2μμ0G(r,ri)Pi(ri).
Pi(ri)=αiEloc,i(ri)=[αi,xx000αi,yy000αi,zz]Eloc,i(ri).
Pi(ri)=αiEexc(ri).
G(r,r)=(I+RRIk2R2+33ikRk2R2k2R4RR)eikR4πR.
G(r,r)=(I+RRR2)eikR4πR.
G(θ,ϕ)=RG(r,r)=[1+sin2θcos2ϕsin2θsinϕcosϕsinθcosθcosϕsin2θsinϕcosϕ1+sin2θsin2ϕsinθcosθsinϕsinθcosθcosϕsinθcosθsinϕ1+cos2θ]eikR4π.
Es,t(θ,ϕ)=ω2μμ0|rrT-probe|(iG(r,ri)αi(ri))Eexc(rT-probe).