Abstract

A novel approach, termed frequency subspace amplitude flow (FSAF), is proposed to reconstruct complex-valued signal from “phaseless” measurements. The proposed FSAF consists of two stages: the first stage approximates low-frequency coefficients of an unknown signal by the spectral method, and the second stage refines the results by the truncated conjugate gradient of amplitude-based nonconvex formulation. FSAF is easy to implement and applicable to natural images, where no additional constraint is needed. Extensive experiments with 1D signals, 2D images, and natural images corroborate significant improvements by using the proposed FSAF method over the state of the art. Especially for sample complexity, FSAF pushes the state of the art for exactly reconstructing complex natural signals (with a size of n) from 3.2n to 2.2n under the Gaussian model, and from 5n to 3n under the coherent diffraction pattern (CDP) model without increasing computational complexity. More importantly, the proposed method is highly flexible and can be easily adapted to the existing algorithms under different noise models.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Conjugate gradient method for phase retrieval based on the Wirtinger derivative

Zhun Wei, Wen Chen, Cheng-Wei Qiu, and Xudong Chen
J. Opt. Soc. Am. A 34(5) 708-712 (2017)

Phase retrieval via reweighted Wirtinger flow

Ziyang Yuan and Hongxia Wang
Appl. Opt. 56(9) 2418-2427 (2017)

Constrained phase retrieval: when alternating projection meets regularization

Baoshun Shi, Qiusheng Lian, Xin Huang, and Ni An
J. Opt. Soc. Am. B 35(6) 1271-1281 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription