Abstract

Most color simulators for color deficiencies are based on the tristimulus values and are intended to simulate the appearance of an image for dichromats. Statistics show that there are more anomalous trichromats than dichromats. Furthermore, the spectral sensitivities of anomalous cones are different from those of normal cones. Clinically, the types of color defects are characterized through Rayleigh color matching, where the observer matches a spectral yellow to a mixture of spectral red and green. The midpoints of the red/green ratios deviate from a normal trichromat. This means that any simulation based on the tristimulus values defined by a normal trichromat cannot predict the color appearance of anomalous Rayleigh matches. We propose a computerized simulation of the color appearance for anomalous trichromats using multispectral images. First, we assume that anomalous trichromats possess a protanomalous (green shifted) or deuteranomalous (red shifted) pigment instead of a normal (L or M) one. Second, we assume that the luminance will be given by L+M, and red/green and yellow/blue opponent color stimulus values are defined through LM and (L+M)S, respectively. Third, equal-energy white will look white for all observers. The spectral sensitivities of the luminance and the two opponent color channels are multiplied by the spectral radiance of each pixel of a multispectral image to give the luminance and opponent color stimulus values of the entire image. In the next stage of color reproduction for normal observers, the luminance and two opponent color channels are transformed into XYZ tristimulus values and then transformed into sRGB to reproduce a final image for anomalous trichromats. The proposed simulation can be used to predict the Rayleigh color matches for anomalous trichromats. We also conducted experiments to evaluate the appearance of simulated images by color deficient observers and verified the reliability of the simulation.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Computerized simulation of color appearance for dichromats

Hans Brettel, Françoise Viénot, and John D. Mollon
J. Opt. Soc. Am. A 14(10) 2647-2655 (1997)

Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats

Paul DeMarco, Joel Pokorny, and Vivianne C. Smith
J. Opt. Soc. Am. A 9(9) 1465-1476 (1992)

Evaluation of single-pigment shift model of anomalous trichromacy*

Joel Pokorny and Vivianne C. Smith
J. Opt. Soc. Am. 67(9) 1196-1209 (1977)

References

  • View by:
  • |
  • |
  • |

  1. G. Wyszecki, “Current developments in colorimetry,” in Colour 73 (Adam Hilger, 1973), pp. 21–51.
  2. A. Stockman and L. T. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
    [Crossref]
  3. CIE, “Fundamental chromaticity diagram with physiological axes–Part 1,” .
  4. CIE, “A colour appearance model for colour management systems: CIECAM02,” .
  5. K. Sagawa and Y. Takahashi, “Spectral luminous efficiency as a function of age,” J. Opt. Soc. Am. A 18, 2659–2667 (2001).
    [Crossref]
  6. J. S. Werner, B. E. Schefrin, and A. Bradley, “Optics and vision of the aging eye,” in Handbook of Optics, Volume III, Vision and Vision Optics, M. Bass, J. M. Enoch, and V. Lakshminarayanan, eds., 3rd ed. (McGraw-Hill, 2010), pp. 14.1–14.38.
  7. M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Science 252, 971–974 (1991).
    [Crossref]
  8. S. L. Merbs and J. Nathans, “Absorption spectra of the hybrid pigments responsible for anomalous color vision,” Science 258, 464–466 (1992).
    [Crossref]
  9. W. Jagla, T. Breitsprecher, I. Kucsera, G. Kovacs, B. Wissinger, S. S. Deeb, and L. T. Sharpe, “Hybrid pigment genes, dichromacy, and anomalous trichromacy,” in Normal & Defective Colour Vision (Oxford University, 2003), pp. 305–317.
  10. P. B. M. Thomas and J. D. Mollon, “Modelling the Rayleigh match,” Vis. Neurosci. 21, 477–482 (2004).
    [Crossref]
  11. H. Brettel, F. Viénot, and J. Mollon, “Computerized simulation of color appearance for dichromats,” J. Opt. Soc. Am. A 14, 2647–2655 (1997).
    [Crossref]
  12. R. Fletcher and J. Voke, Defective Colour Vision, Fundamentals, Diagnosis and Management (Adam Hilger, 1985).
  13. P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
    [Crossref]
  14. J. C. He, K. Steven, and L. Shevell, “Variation in color matching and discrimination among deuteranomalous trichtomats: theoretical implications of small difference in photopigments,” Vis. Res. 35, 2579–2588 (1995).
    [Crossref]
  15. T. B. Lamb, “Photoreceptor spectral sensitivities: common shape in the long-wavelength region,” Vis. Res. 35, 3083–3091 (1995).
    [Crossref]
  16. P. B. M. Thomas, M. A. Formankiewicz, and J. D. Mollon, “The effect of photopigment optical density on the color vision of the anomalous trichromat,” Vis. Res. 51, 2224–2233 (2011).
    [Crossref]
  17. G. Wyszecki and W. S. Stiles, “Theories and models of color vision,” in Color Science, 2nd ed. (Wiley, 1982), Chap. 8, pp. 591–592.
  18. D. A. Bayler, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
    [Crossref]
  19. CIE, “Fundamental chromaticity diagram with physiological axes–Part 2,” .
  20. IEC, “Multimedia systems and equipment–colour measurement and management–Part 2-1: colour management–default RGB colour space–sRGB,” .
  21. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vision Res. 15, 161–171 (1975).
    [Crossref]
  22. J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
    [Crossref]
  23. http://www.cs.columbia.edu/CAVE/databases/multispectral/ .
  24. M. Machado and M. Oliveira, “A physiologically-based model for simulation of color vision deficiency,” IEEE Trans. Vis. Comput. Graph. 15, 1291–1298 (2009).
    [Crossref]
  25. M. Yoshizawa and H. Yaguchi, “The dichromat’s color appearance considering viewing condition,” J. Color Sci. Assoc. Jpn. 32, 175–184 (2008).
  26. N. Ohta, H. Yaguchi, and Y. Mizokami, “Verification of the color appearance model of anomalous trichromats,” J. Color Sci. Assoc. Jpn. 34, 96–97 (2010).

2011 (1)

P. B. M. Thomas, M. A. Formankiewicz, and J. D. Mollon, “The effect of photopigment optical density on the color vision of the anomalous trichromat,” Vis. Res. 51, 2224–2233 (2011).
[Crossref]

2010 (2)

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
[Crossref]

N. Ohta, H. Yaguchi, and Y. Mizokami, “Verification of the color appearance model of anomalous trichromats,” J. Color Sci. Assoc. Jpn. 34, 96–97 (2010).

2009 (1)

M. Machado and M. Oliveira, “A physiologically-based model for simulation of color vision deficiency,” IEEE Trans. Vis. Comput. Graph. 15, 1291–1298 (2009).
[Crossref]

2008 (1)

M. Yoshizawa and H. Yaguchi, “The dichromat’s color appearance considering viewing condition,” J. Color Sci. Assoc. Jpn. 32, 175–184 (2008).

2004 (1)

P. B. M. Thomas and J. D. Mollon, “Modelling the Rayleigh match,” Vis. Neurosci. 21, 477–482 (2004).
[Crossref]

2001 (1)

2000 (1)

A. Stockman and L. T. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[Crossref]

1997 (1)

1995 (2)

J. C. He, K. Steven, and L. Shevell, “Variation in color matching and discrimination among deuteranomalous trichtomats: theoretical implications of small difference in photopigments,” Vis. Res. 35, 2579–2588 (1995).
[Crossref]

T. B. Lamb, “Photoreceptor spectral sensitivities: common shape in the long-wavelength region,” Vis. Res. 35, 3083–3091 (1995).
[Crossref]

1992 (2)

P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[Crossref]

S. L. Merbs and J. Nathans, “Absorption spectra of the hybrid pigments responsible for anomalous color vision,” Science 258, 464–466 (1992).
[Crossref]

1991 (1)

M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Science 252, 971–974 (1991).
[Crossref]

1987 (1)

D. A. Bayler, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[Crossref]

1975 (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vision Res. 15, 161–171 (1975).
[Crossref]

Bayler, D. A.

D. A. Bayler, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[Crossref]

Bradley, A.

J. S. Werner, B. E. Schefrin, and A. Bradley, “Optics and vision of the aging eye,” in Handbook of Optics, Volume III, Vision and Vision Optics, M. Bass, J. M. Enoch, and V. Lakshminarayanan, eds., 3rd ed. (McGraw-Hill, 2010), pp. 14.1–14.38.

Breitsprecher, T.

W. Jagla, T. Breitsprecher, I. Kucsera, G. Kovacs, B. Wissinger, S. S. Deeb, and L. T. Sharpe, “Hybrid pigment genes, dichromacy, and anomalous trichromacy,” in Normal & Defective Colour Vision (Oxford University, 2003), pp. 305–317.

Brettel, H.

Deeb, S. S.

W. Jagla, T. Breitsprecher, I. Kucsera, G. Kovacs, B. Wissinger, S. S. Deeb, and L. T. Sharpe, “Hybrid pigment genes, dichromacy, and anomalous trichromacy,” in Normal & Defective Colour Vision (Oxford University, 2003), pp. 305–317.

DeMarco, P.

Felgueiras, P. E. R.

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
[Crossref]

Fletcher, R.

R. Fletcher and J. Voke, Defective Colour Vision, Fundamentals, Diagnosis and Management (Adam Hilger, 1985).

Formankiewicz, M. A.

P. B. M. Thomas, M. A. Formankiewicz, and J. D. Mollon, “The effect of photopigment optical density on the color vision of the anomalous trichromat,” Vis. Res. 51, 2224–2233 (2011).
[Crossref]

He, J. C.

J. C. He, K. Steven, and L. Shevell, “Variation in color matching and discrimination among deuteranomalous trichtomats: theoretical implications of small difference in photopigments,” Vis. Res. 35, 2579–2588 (1995).
[Crossref]

Jacobs, G. H.

M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Science 252, 971–974 (1991).
[Crossref]

Jagla, W.

W. Jagla, T. Breitsprecher, I. Kucsera, G. Kovacs, B. Wissinger, S. S. Deeb, and L. T. Sharpe, “Hybrid pigment genes, dichromacy, and anomalous trichromacy,” in Normal & Defective Colour Vision (Oxford University, 2003), pp. 305–317.

Kovacs, G.

W. Jagla, T. Breitsprecher, I. Kucsera, G. Kovacs, B. Wissinger, S. S. Deeb, and L. T. Sharpe, “Hybrid pigment genes, dichromacy, and anomalous trichromacy,” in Normal & Defective Colour Vision (Oxford University, 2003), pp. 305–317.

Kucsera, I.

W. Jagla, T. Breitsprecher, I. Kucsera, G. Kovacs, B. Wissinger, S. S. Deeb, and L. T. Sharpe, “Hybrid pigment genes, dichromacy, and anomalous trichromacy,” in Normal & Defective Colour Vision (Oxford University, 2003), pp. 305–317.

Lamb, T. B.

T. B. Lamb, “Photoreceptor spectral sensitivities: common shape in the long-wavelength region,” Vis. Res. 35, 3083–3091 (1995).
[Crossref]

Linhares, J. M. M.

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
[Crossref]

Machado, M.

M. Machado and M. Oliveira, “A physiologically-based model for simulation of color vision deficiency,” IEEE Trans. Vis. Comput. Graph. 15, 1291–1298 (2009).
[Crossref]

Merbs, S. L.

S. L. Merbs and J. Nathans, “Absorption spectra of the hybrid pigments responsible for anomalous color vision,” Science 258, 464–466 (1992).
[Crossref]

Mizokami, Y.

N. Ohta, H. Yaguchi, and Y. Mizokami, “Verification of the color appearance model of anomalous trichromats,” J. Color Sci. Assoc. Jpn. 34, 96–97 (2010).

Mollon, J.

Mollon, J. D.

P. B. M. Thomas, M. A. Formankiewicz, and J. D. Mollon, “The effect of photopigment optical density on the color vision of the anomalous trichromat,” Vis. Res. 51, 2224–2233 (2011).
[Crossref]

P. B. M. Thomas and J. D. Mollon, “Modelling the Rayleigh match,” Vis. Neurosci. 21, 477–482 (2004).
[Crossref]

Nascimento, S. M. C.

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
[Crossref]

Nathans, J.

S. L. Merbs and J. Nathans, “Absorption spectra of the hybrid pigments responsible for anomalous color vision,” Science 258, 464–466 (1992).
[Crossref]

Neitz, J.

M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Science 252, 971–974 (1991).
[Crossref]

Neitz, M.

M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Science 252, 971–974 (1991).
[Crossref]

Nunn, B. J.

D. A. Bayler, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[Crossref]

Ohta, N.

N. Ohta, H. Yaguchi, and Y. Mizokami, “Verification of the color appearance model of anomalous trichromats,” J. Color Sci. Assoc. Jpn. 34, 96–97 (2010).

Oliveira, M.

M. Machado and M. Oliveira, “A physiologically-based model for simulation of color vision deficiency,” IEEE Trans. Vis. Comput. Graph. 15, 1291–1298 (2009).
[Crossref]

Pinto, P. D.

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
[Crossref]

Pokorny, J.

P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[Crossref]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vision Res. 15, 161–171 (1975).
[Crossref]

Sagawa, K.

Schefrin, B. E.

J. S. Werner, B. E. Schefrin, and A. Bradley, “Optics and vision of the aging eye,” in Handbook of Optics, Volume III, Vision and Vision Optics, M. Bass, J. M. Enoch, and V. Lakshminarayanan, eds., 3rd ed. (McGraw-Hill, 2010), pp. 14.1–14.38.

Schnapf, J. L.

D. A. Bayler, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[Crossref]

Sharpe, L. T.

A. Stockman and L. T. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[Crossref]

W. Jagla, T. Breitsprecher, I. Kucsera, G. Kovacs, B. Wissinger, S. S. Deeb, and L. T. Sharpe, “Hybrid pigment genes, dichromacy, and anomalous trichromacy,” in Normal & Defective Colour Vision (Oxford University, 2003), pp. 305–317.

Shevell, L.

J. C. He, K. Steven, and L. Shevell, “Variation in color matching and discrimination among deuteranomalous trichtomats: theoretical implications of small difference in photopigments,” Vis. Res. 35, 2579–2588 (1995).
[Crossref]

Smith, V. C.

P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[Crossref]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vision Res. 15, 161–171 (1975).
[Crossref]

Steven, K.

J. C. He, K. Steven, and L. Shevell, “Variation in color matching and discrimination among deuteranomalous trichtomats: theoretical implications of small difference in photopigments,” Vis. Res. 35, 2579–2588 (1995).
[Crossref]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, “Theories and models of color vision,” in Color Science, 2nd ed. (Wiley, 1982), Chap. 8, pp. 591–592.

Stockman, A.

A. Stockman and L. T. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[Crossref]

Takahashi, Y.

Thomas, P. B. M.

P. B. M. Thomas, M. A. Formankiewicz, and J. D. Mollon, “The effect of photopigment optical density on the color vision of the anomalous trichromat,” Vis. Res. 51, 2224–2233 (2011).
[Crossref]

P. B. M. Thomas and J. D. Mollon, “Modelling the Rayleigh match,” Vis. Neurosci. 21, 477–482 (2004).
[Crossref]

Viénot, F.

Voke, J.

R. Fletcher and J. Voke, Defective Colour Vision, Fundamentals, Diagnosis and Management (Adam Hilger, 1985).

Werner, J. S.

J. S. Werner, B. E. Schefrin, and A. Bradley, “Optics and vision of the aging eye,” in Handbook of Optics, Volume III, Vision and Vision Optics, M. Bass, J. M. Enoch, and V. Lakshminarayanan, eds., 3rd ed. (McGraw-Hill, 2010), pp. 14.1–14.38.

Wissinger, B.

W. Jagla, T. Breitsprecher, I. Kucsera, G. Kovacs, B. Wissinger, S. S. Deeb, and L. T. Sharpe, “Hybrid pigment genes, dichromacy, and anomalous trichromacy,” in Normal & Defective Colour Vision (Oxford University, 2003), pp. 305–317.

Wyszecki, G.

G. Wyszecki, “Current developments in colorimetry,” in Colour 73 (Adam Hilger, 1973), pp. 21–51.

G. Wyszecki and W. S. Stiles, “Theories and models of color vision,” in Color Science, 2nd ed. (Wiley, 1982), Chap. 8, pp. 591–592.

Yaguchi, H.

N. Ohta, H. Yaguchi, and Y. Mizokami, “Verification of the color appearance model of anomalous trichromats,” J. Color Sci. Assoc. Jpn. 34, 96–97 (2010).

M. Yoshizawa and H. Yaguchi, “The dichromat’s color appearance considering viewing condition,” J. Color Sci. Assoc. Jpn. 32, 175–184 (2008).

Yoshizawa, M.

M. Yoshizawa and H. Yaguchi, “The dichromat’s color appearance considering viewing condition,” J. Color Sci. Assoc. Jpn. 32, 175–184 (2008).

IEEE Trans. Vis. Comput. Graph. (1)

M. Machado and M. Oliveira, “A physiologically-based model for simulation of color vision deficiency,” IEEE Trans. Vis. Comput. Graph. 15, 1291–1298 (2009).
[Crossref]

J. Color Sci. Assoc. Jpn. (2)

M. Yoshizawa and H. Yaguchi, “The dichromat’s color appearance considering viewing condition,” J. Color Sci. Assoc. Jpn. 32, 175–184 (2008).

N. Ohta, H. Yaguchi, and Y. Mizokami, “Verification of the color appearance model of anomalous trichromats,” J. Color Sci. Assoc. Jpn. 34, 96–97 (2010).

J. Opt. Soc. Am. A (3)

J. Physiol. (1)

D. A. Bayler, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[Crossref]

Ophthalmic Physiol. Opt. (1)

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
[Crossref]

Science (2)

M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Science 252, 971–974 (1991).
[Crossref]

S. L. Merbs and J. Nathans, “Absorption spectra of the hybrid pigments responsible for anomalous color vision,” Science 258, 464–466 (1992).
[Crossref]

Vis. Neurosci. (1)

P. B. M. Thomas and J. D. Mollon, “Modelling the Rayleigh match,” Vis. Neurosci. 21, 477–482 (2004).
[Crossref]

Vis. Res. (4)

J. C. He, K. Steven, and L. Shevell, “Variation in color matching and discrimination among deuteranomalous trichtomats: theoretical implications of small difference in photopigments,” Vis. Res. 35, 2579–2588 (1995).
[Crossref]

T. B. Lamb, “Photoreceptor spectral sensitivities: common shape in the long-wavelength region,” Vis. Res. 35, 3083–3091 (1995).
[Crossref]

P. B. M. Thomas, M. A. Formankiewicz, and J. D. Mollon, “The effect of photopigment optical density on the color vision of the anomalous trichromat,” Vis. Res. 51, 2224–2233 (2011).
[Crossref]

A. Stockman and L. T. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[Crossref]

Vision Res. (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vision Res. 15, 161–171 (1975).
[Crossref]

Other (10)

G. Wyszecki, “Current developments in colorimetry,” in Colour 73 (Adam Hilger, 1973), pp. 21–51.

http://www.cs.columbia.edu/CAVE/databases/multispectral/ .

W. Jagla, T. Breitsprecher, I. Kucsera, G. Kovacs, B. Wissinger, S. S. Deeb, and L. T. Sharpe, “Hybrid pigment genes, dichromacy, and anomalous trichromacy,” in Normal & Defective Colour Vision (Oxford University, 2003), pp. 305–317.

CIE, “Fundamental chromaticity diagram with physiological axes–Part 2,” .

IEC, “Multimedia systems and equipment–colour measurement and management–Part 2-1: colour management–default RGB colour space–sRGB,” .

CIE, “Fundamental chromaticity diagram with physiological axes–Part 1,” .

CIE, “A colour appearance model for colour management systems: CIECAM02,” .

J. S. Werner, B. E. Schefrin, and A. Bradley, “Optics and vision of the aging eye,” in Handbook of Optics, Volume III, Vision and Vision Optics, M. Bass, J. M. Enoch, and V. Lakshminarayanan, eds., 3rd ed. (McGraw-Hill, 2010), pp. 14.1–14.38.

G. Wyszecki and W. S. Stiles, “Theories and models of color vision,” in Color Science, 2nd ed. (Wiley, 1982), Chap. 8, pp. 591–592.

R. Fletcher and J. Voke, Defective Colour Vision, Fundamentals, Diagnosis and Management (Adam Hilger, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Logarithm of quantal absorption of the L-photopigments and that of the M-photopigments with the Dartnall monogram curve [10] as a function of wavenumber, 1 / λ 1 / λ max .
Fig. 2.
Fig. 2. L - and M -cone spectral sensitivity curves of (a) the protanomalous trichromats and (b) the deuteranomalous trichromats.
Fig. 3.
Fig. 3. Spectral sensitivity curves of the luminance channel for (a) protanomalous trichromats and (b) deuteranomalous trichromats.
Fig. 4.
Fig. 4. Spectral sensitivity curves of the red/green opponent color channel for (a) protanomalous trichromats and (b) deuteranomalous trichromats.
Fig. 5.
Fig. 5. Spectral sensitivity curves of the yellow/blue opponent color channel for (a) protanomalous and (b) deuteranomalous.
Fig. 6.
Fig. 6. Simulated images of X -Rite ColorChecker.
Fig. 7.
Fig. 7. ( x F , y F ) chromaticity coordinates of simulated color for (a) prota and (b) deuteranomalous obtained from six color targets: red, yellow, green, cyan, blue, and magenta.
Fig. 8.
Fig. 8. Simulated images of “beads” for anomalous trichromats.
Fig. 9.
Fig. 9. Simulation results of Rayleigh matches for anomalous trichromats.
Fig. 10.
Fig. 10. Examples of test images for visual evaluation experiment.
Fig. 11.
Fig. 11. Discrimination thresholds of wavenumber shift of nine observers for simulation images of (a) a deuteranope and (b) a protanope.
Fig. 12.
Fig. 12. Relation between discrimination threshold and the confusion range of color matching using an anomaloscope.
Fig. 13.
Fig. 13. Comparison of the spectral model and the model using coefficient k .

Tables (1)

Tables Icon

Table 1. Results of Color Vision Tests

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

log A L ( v ) = log A L ( v Δ v ) ,
log A M ( v ) = log A M ( v + Δ v ) .
α i , l ( λ ) = 1 10 [ 0.5 A i , 0 ( L pigment ) ( λ ) ] ,
α i , m ( λ ) = 1 10 [ 0.5 A i , 0 ( M pigment ) ( λ ) ] ,
α i , s ( λ ) = 1 10 [ 0.4 A i , 0 ( L pigment ) ( λ ) ] .
l ¯ q ( λ ) = α i , l ( λ ) τ macular ( λ ) τ ocul ( λ ) ,
m ¯ q ( λ ) = α i , m ( λ ) τ macular ( λ ) τ ocul ( λ ) ,
s ¯ q ( λ ) = α i , s ( λ ) τ macular ( λ ) τ ocul ( λ ) .
y ¯ ( λ ) = 0.6899 ( L EEW / L EEW ) l ¯ ( λ ) + 0.3483 ( M EEW / M EEW ) m ¯ ( λ ) ,
r / g ¯ ( λ ) = 0.8344 ( L EEW / L EEW ) l ¯ ( λ ) 1.0260 ( M EEW / M EEW ) m ¯ ( λ ) ,
y / b ¯ ( λ ) = 0.3566 ( L EEW / L EEW ) l ¯ ( λ ) + 0.1800 ( M EEW / M EEW ) m ¯ ( λ ) s ¯ ( λ ) .
Y = E ( λ ) ρ ( λ ) y ¯ ( λ ) d λ ,
C r / g = E ( λ ) ρ ( λ ) r / g ¯ ( λ ) d λ ,
C y / b = E ( λ ) ρ ( λ ) y / b ¯ ( λ ) d λ .
X F = Y + 1.6541 C r / g 0.3648 C y / b ,
Y F = Y ,
Z F = Y 1.9349 C y / b .
R = 3.2406 X F 1.5372 Y F 0.4986 Z F ,
G = 0.9689 X F + 1.8758 Y F 0.0415 Z F ,
B = 0.0557 X F 0.2040 Y F + 1.0570 Z F .
E y L ( 590 ) = E r L ( 670 ) + E g L ( 545 ) ,
E y M ( 590 ) = E r M ( 670 ) + E g M ( 545 ) .
Y y = 0.6899 E y L ( 590 ) + 0.3483 E y M ( 590 ) ,
Y r = 0.6899 E r L ( 670 ) + 0.3483 E r M ( 670 ) ,
Y g = 0.6899 E g L ( 545 ) + 0.3483 E g M ( 545 ) .

Metrics