Abstract

In this paper, a new ultra-thin and broadband wide-angle polarization-insensitive metasurface solar absorber is designed and optimized. The proposed metasurface absorber topology is optimized by using a genetic algorithm to enhance the bandwidth and decrease the unit cell area. The proposed unit cell is designed with fourfolded symmetric subunit cells rotated in the clockwise direction to achieve a polarization-independent response. The unit cell with 320×320  nm2 area and 50 nm thickness has a broadband (90%) absorption response in the visible frequency region of the solar spectrum and infrared from 350 THz to 700 THz for normal incident angles and higher than 70% for incident angles up to 40° at both polarizations.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths

Tao Wu, Jianjun Lai, Shaowu Wang, Xiaoping Li, and Ying Huang
Appl. Opt. 56(21) 5844-5848 (2017)

Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances

Mohammad Mehrabi, Hamid Rajabalipanah, Ali Abdolali, and Majid Tayarani
Appl. Opt. 57(14) 3693-3703 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Rufangura and S. Cumali, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
    [Crossref]
  2. A. K. Azad, W. J. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
    [Crossref]
  3. S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).
    [Crossref]
  4. J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20, 14871–14878 (2012).
    [Crossref]
  5. W.-J. Zhou, X.-X. Wang, and J.-Q. Wang, “Polarization and angle quasi-independent metamaterial crystal with electromagnetically induced transparency based on plasmon hybridization,” J. Mod. Opt. 62, 1027–1031 (2015).
    [Crossref]
  6. M. P. Ustunsoy and C. Sabah, “Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers,” J. Alloys Compd. 687, 514–520 (2016).
    [Crossref]
  7. J. Wang, J. Zhang, Y. Tian, C. Fan, K. Mu, S. Chen, and E. Liang, “Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-Stokes Raman scattering,” Opt. Express 25, 497–507 (2017).
    [Crossref]
  8. J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21, 25159–25166 (2013).
    [Crossref]
  9. B. Yuan, W. Zhou, and J. Wang, “Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications,” J. Opt. 16, 105013 (2014).
    [Crossref]
  10. J. Wang, J. Zhang, C. Fan, K. Mu, E. Liang, and P. Ding, “Electromagnetic field manipulation in planar nanorod antennas metamaterial for slow light application,” Opt. Commun. 383, 36–41 (2017).
    [Crossref]
  11. G. Sen, S. N. Islam, A. Banerjee, and S. Das, “Broadband perfect metamaterial absorber on thin substrate for X-band and Ku-band applications,” Prog. Electromagn. Res. C 73, 9–16 (2017).
    [Crossref]
  12. J. Tang, X. Zhongyin, X. Kaikai, L. Xinyang, and Zh. Xiaoxia, “Ultrathin and broadband metamaterial absorber based on new four L structure in infrared and visible region,” in Progress in Electromagnetic Research Symposium (PIERS) (2016), pp. 3088–3091.
  13. T. Sun, C. Fei Guo, F. Cao, E. Metin Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104, 251119 (2014).
    [Crossref]
  14. J. Tang, Z. Xiao, and K. Xu, “Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region,” Opt. Mater. 60, 142–147 (2016).
    [Crossref]
  15. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
    [Crossref]
  16. P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
    [Crossref]
  17. P. Rufangura and C. Sabah, “Polarisation insensitive tunable metamaterial perfect absorber for solar cells applications,” IET Optoelectron. 10, 211–216 (2016).
    [Crossref]
  18. P. Rufangura and C. Sabah, “Theoretical and thermal characterization of a wideband perfect absorber for application in solar cells,” Appl. Phys. A 122, 995 (2016).
    [Crossref]

2017 (3)

J. Wang, J. Zhang, Y. Tian, C. Fan, K. Mu, S. Chen, and E. Liang, “Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-Stokes Raman scattering,” Opt. Express 25, 497–507 (2017).
[Crossref]

J. Wang, J. Zhang, C. Fan, K. Mu, E. Liang, and P. Ding, “Electromagnetic field manipulation in planar nanorod antennas metamaterial for slow light application,” Opt. Commun. 383, 36–41 (2017).
[Crossref]

G. Sen, S. N. Islam, A. Banerjee, and S. Das, “Broadband perfect metamaterial absorber on thin substrate for X-band and Ku-band applications,” Prog. Electromagn. Res. C 73, 9–16 (2017).
[Crossref]

2016 (7)

J. Tang, Z. Xiao, and K. Xu, “Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region,” Opt. Mater. 60, 142–147 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Polarisation insensitive tunable metamaterial perfect absorber for solar cells applications,” IET Optoelectron. 10, 211–216 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Theoretical and thermal characterization of a wideband perfect absorber for application in solar cells,” Appl. Phys. A 122, 995 (2016).
[Crossref]

M. P. Ustunsoy and C. Sabah, “Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers,” J. Alloys Compd. 687, 514–520 (2016).
[Crossref]

P. Rufangura and S. Cumali, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
[Crossref]

A. K. Azad, W. J. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

2015 (1)

W.-J. Zhou, X.-X. Wang, and J.-Q. Wang, “Polarization and angle quasi-independent metamaterial crystal with electromagnetically induced transparency based on plasmon hybridization,” J. Mod. Opt. 62, 1027–1031 (2015).
[Crossref]

2014 (2)

B. Yuan, W. Zhou, and J. Wang, “Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications,” J. Opt. 16, 105013 (2014).
[Crossref]

T. Sun, C. Fei Guo, F. Cao, E. Metin Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104, 251119 (2014).
[Crossref]

2013 (2)

J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21, 25159–25166 (2013).
[Crossref]

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

2012 (1)

1999 (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

Azad, A. K.

A. K. Azad, W. J. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Banerjee, A.

G. Sen, S. N. Islam, A. Banerjee, and S. Das, “Broadband perfect metamaterial absorber on thin substrate for X-band and Ku-band applications,” Prog. Electromagn. Res. C 73, 9–16 (2017).
[Crossref]

Boriskina, S. V.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Cai, G.

Cao, F.

T. Sun, C. Fei Guo, F. Cao, E. Metin Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104, 251119 (2014).
[Crossref]

Chen, G.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Chen, H. T.

A. K. Azad, W. J. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Chen, S.

Cheng, Y.

Cumali, S.

P. Rufangura and S. Cumali, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
[Crossref]

Dalvit, D. A.

A. K. Azad, W. J. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Das, S.

G. Sen, S. N. Islam, A. Banerjee, and S. Das, “Broadband perfect metamaterial absorber on thin substrate for X-band and Ku-band applications,” Prog. Electromagn. Res. C 73, 9–16 (2017).
[Crossref]

Ding, P.

Fan, C.

Fei Guo, C.

T. Sun, C. Fei Guo, F. Cao, E. Metin Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104, 251119 (2014).
[Crossref]

Ghasemi, H.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

Giersig, M.

T. Sun, C. Fei Guo, F. Cao, E. Metin Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104, 251119 (2014).
[Crossref]

He, J.

Hu, W.

Islam, S. N.

G. Sen, S. N. Islam, A. Banerjee, and S. Das, “Broadband perfect metamaterial absorber on thin substrate for X-band and Ku-band applications,” Prog. Electromagn. Res. C 73, 9–16 (2017).
[Crossref]

Kaikai, X.

J. Tang, X. Zhongyin, X. Kaikai, L. Xinyang, and Zh. Xiaoxia, “Ultrathin and broadband metamaterial absorber based on new four L structure in infrared and visible region,” in Progress in Electromagnetic Research Symposium (PIERS) (2016), pp. 3088–3091.

Kempa, K.

T. Sun, C. Fei Guo, F. Cao, E. Metin Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104, 251119 (2014).
[Crossref]

Kort-Kamp, W. J.

A. K. Azad, W. J. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Liang, E.

Luk, T. S.

A. K. Azad, W. J. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Metin Akinoglu, E.

T. Sun, C. Fei Guo, F. Cao, E. Metin Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104, 251119 (2014).
[Crossref]

Mu, K.

J. Wang, J. Zhang, Y. Tian, C. Fan, K. Mu, S. Chen, and E. Liang, “Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-Stokes Raman scattering,” Opt. Express 25, 497–507 (2017).
[Crossref]

J. Wang, J. Zhang, C. Fan, K. Mu, E. Liang, and P. Ding, “Electromagnetic field manipulation in planar nanorod antennas metamaterial for slow light application,” Opt. Commun. 383, 36–41 (2017).
[Crossref]

Ren, Z.

T. Sun, C. Fei Guo, F. Cao, E. Metin Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104, 251119 (2014).
[Crossref]

Rufangura, P.

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Polarisation insensitive tunable metamaterial perfect absorber for solar cells applications,” IET Optoelectron. 10, 211–216 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Theoretical and thermal characterization of a wideband perfect absorber for application in solar cells,” Appl. Phys. A 122, 995 (2016).
[Crossref]

P. Rufangura and S. Cumali, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
[Crossref]

Sabah, C.

M. P. Ustunsoy and C. Sabah, “Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers,” J. Alloys Compd. 687, 514–520 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Theoretical and thermal characterization of a wideband perfect absorber for application in solar cells,” Appl. Phys. A 122, 995 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Polarisation insensitive tunable metamaterial perfect absorber for solar cells applications,” IET Optoelectron. 10, 211–216 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

Sen, G.

G. Sen, S. N. Islam, A. Banerjee, and S. Das, “Broadband perfect metamaterial absorber on thin substrate for X-band and Ku-band applications,” Prog. Electromagn. Res. C 73, 9–16 (2017).
[Crossref]

Sun, T.

T. Sun, C. Fei Guo, F. Cao, E. Metin Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104, 251119 (2014).
[Crossref]

Sykora, M.

A. K. Azad, W. J. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Tang, J.

J. Tang, Z. Xiao, and K. Xu, “Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region,” Opt. Mater. 60, 142–147 (2016).
[Crossref]

J. Tang, X. Zhongyin, X. Kaikai, L. Xinyang, and Zh. Xiaoxia, “Ultrathin and broadband metamaterial absorber based on new four L structure in infrared and visible region,” in Progress in Electromagnetic Research Symposium (PIERS) (2016), pp. 3088–3091.

Taylor, A. J.

A. K. Azad, W. J. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Tian, Y.

Ustunsoy, M. P.

M. P. Ustunsoy and C. Sabah, “Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers,” J. Alloys Compd. 687, 514–520 (2016).
[Crossref]

Wang, J.

Wang, J.-Q.

W.-J. Zhou, X.-X. Wang, and J.-Q. Wang, “Polarization and angle quasi-independent metamaterial crystal with electromagnetically induced transparency based on plasmon hybridization,” J. Mod. Opt. 62, 1027–1031 (2015).
[Crossref]

Wang, X.-X.

W.-J. Zhou, X.-X. Wang, and J.-Q. Wang, “Polarization and angle quasi-independent metamaterial crystal with electromagnetically induced transparency based on plasmon hybridization,” J. Mod. Opt. 62, 1027–1031 (2015).
[Crossref]

Wang, Y.

T. Sun, C. Fei Guo, F. Cao, E. Metin Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104, 251119 (2014).
[Crossref]

Weisse-Bernstein, N. R.

A. K. Azad, W. J. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Xiao, Z.

J. Tang, Z. Xiao, and K. Xu, “Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region,” Opt. Mater. 60, 142–147 (2016).
[Crossref]

Xiaoxia, Zh.

J. Tang, X. Zhongyin, X. Kaikai, L. Xinyang, and Zh. Xiaoxia, “Ultrathin and broadband metamaterial absorber based on new four L structure in infrared and visible region,” in Progress in Electromagnetic Research Symposium (PIERS) (2016), pp. 3088–3091.

Xinyang, L.

J. Tang, X. Zhongyin, X. Kaikai, L. Xinyang, and Zh. Xiaoxia, “Ultrathin and broadband metamaterial absorber based on new four L structure in infrared and visible region,” in Progress in Electromagnetic Research Symposium (PIERS) (2016), pp. 3088–3091.

Xu, K.

J. Tang, Z. Xiao, and K. Xu, “Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region,” Opt. Mater. 60, 142–147 (2016).
[Crossref]

Xue, Q.

Yuan, B.

B. Yuan, W. Zhou, and J. Wang, “Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications,” J. Opt. 16, 105013 (2014).
[Crossref]

J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21, 25159–25166 (2013).
[Crossref]

Zhang, J.

J. Wang, J. Zhang, Y. Tian, C. Fan, K. Mu, S. Chen, and E. Liang, “Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-Stokes Raman scattering,” Opt. Express 25, 497–507 (2017).
[Crossref]

J. Wang, J. Zhang, C. Fan, K. Mu, E. Liang, and P. Ding, “Electromagnetic field manipulation in planar nanorod antennas metamaterial for slow light application,” Opt. Commun. 383, 36–41 (2017).
[Crossref]

Zhongyin, X.

J. Tang, X. Zhongyin, X. Kaikai, L. Xinyang, and Zh. Xiaoxia, “Ultrathin and broadband metamaterial absorber based on new four L structure in infrared and visible region,” in Progress in Electromagnetic Research Symposium (PIERS) (2016), pp. 3088–3091.

Zhou, W.

B. Yuan, W. Zhou, and J. Wang, “Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications,” J. Opt. 16, 105013 (2014).
[Crossref]

Zhou, W.-J.

W.-J. Zhou, X.-X. Wang, and J.-Q. Wang, “Polarization and angle quasi-independent metamaterial crystal with electromagnetically induced transparency based on plasmon hybridization,” J. Mod. Opt. 62, 1027–1031 (2015).
[Crossref]

Appl. Phys. A (1)

P. Rufangura and C. Sabah, “Theoretical and thermal characterization of a wideband perfect absorber for application in solar cells,” Appl. Phys. A 122, 995 (2016).
[Crossref]

Appl. Phys. Lett. (1)

T. Sun, C. Fei Guo, F. Cao, E. Metin Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104, 251119 (2014).
[Crossref]

IET Optoelectron. (1)

P. Rufangura and C. Sabah, “Polarisation insensitive tunable metamaterial perfect absorber for solar cells applications,” IET Optoelectron. 10, 211–216 (2016).
[Crossref]

J. Alloys Compd. (3)

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

M. P. Ustunsoy and C. Sabah, “Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers,” J. Alloys Compd. 687, 514–520 (2016).
[Crossref]

P. Rufangura and S. Cumali, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
[Crossref]

J. Mod. Opt. (1)

W.-J. Zhou, X.-X. Wang, and J.-Q. Wang, “Polarization and angle quasi-independent metamaterial crystal with electromagnetically induced transparency based on plasmon hybridization,” J. Mod. Opt. 62, 1027–1031 (2015).
[Crossref]

J. Opt. (1)

B. Yuan, W. Zhou, and J. Wang, “Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications,” J. Opt. 16, 105013 (2014).
[Crossref]

Mater. Today (1)

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: from physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Opt. Commun. (2)

J. Wang, J. Zhang, C. Fan, K. Mu, E. Liang, and P. Ding, “Electromagnetic field manipulation in planar nanorod antennas metamaterial for slow light application,” Opt. Commun. 383, 36–41 (2017).
[Crossref]

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

Opt. Express (3)

Opt. Mater. (1)

J. Tang, Z. Xiao, and K. Xu, “Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region,” Opt. Mater. 60, 142–147 (2016).
[Crossref]

Prog. Electromagn. Res. C (1)

G. Sen, S. N. Islam, A. Banerjee, and S. Das, “Broadband perfect metamaterial absorber on thin substrate for X-band and Ku-band applications,” Prog. Electromagn. Res. C 73, 9–16 (2017).
[Crossref]

Sci. Rep. (1)

A. K. Azad, W. J. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6, 20347 (2016).
[Crossref]

Other (1)

J. Tang, X. Zhongyin, X. Kaikai, L. Xinyang, and Zh. Xiaoxia, “Ultrathin and broadband metamaterial absorber based on new four L structure in infrared and visible region,” in Progress in Electromagnetic Research Symposium (PIERS) (2016), pp. 3088–3091.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Metasurface absorber structure. (a) Overall structure and unit cell. (b) Optimization binary coded matrix in the subunit cell.
Fig. 2.
Fig. 2. Flowchart of the optimization process.
Fig. 3.
Fig. 3. Absorption of the proposed unit cell at different incident angles: (a) TE polarization and (b) TM polarization.
Fig. 4.
Fig. 4. Total electric field distribution in the proposed metasurface absorber at (a) 350 THz, (b) 600 THz, and (c) 700 THz.
Fig. 5.
Fig. 5. Effect of gold and copper material in the metasurface absorption versus frequency.

Tables (1)

Tables Icon

Table 1. GA Optimization Parameters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A = 1 T R = 1 | S 11 | 2 | S 12 | 2 ,
A = 1 | S 11 | 2 .
Cost = i = 1 N ( A i 0.9 ) 2 for    A i < 0.9 ,

Metrics