Abstract

Accurate measurements of the oceanic whitecap coverage from whitecap images are required for better understanding the air–gas transfer and aerosol production processes. However, this is a challenging task because the whitecap patches are formed immediately after the wave breaks and are spread over a wide area. The main challenges in designing a whitecap-imaging instrument are the small field of view of the camera lens, processing large numbers of images, recording data over long time periods, and deployment difficulties in stormy conditions. This paper describes the design of a novel high-resolution optical instrument for imaging oceanic whitecaps and the automated algorithm processing the collected images. The instrument was successfully deployed in 2013 as part of the HiWINGS campaign in the North Atlantic Ocean. The instrument uses a fish-eye camera lens to image the whitecaps in wide angle of view (180°).

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Toward omnidirectional and automated imaging system for measuring oceanic whitecap coverage

Raied S. Al-Lashi
J. Opt. Soc. Am. A 33(8) 1589-1597 (2016)

Simulation of oceanic whitecaps and their reflectance characteristics in the short wavelength infrared

Frédéric Schwenger and Endre Repasi
Appl. Opt. 56(6) 1662-1673 (2017)

Effective reflectance of oceanic whitecaps

Peter Koepke
Appl. Opt. 23(11) 1816-1824 (1984)

References

  • View by:
  • |
  • |
  • |

  1. W. E. Asher, L. M. Karle, B. J. Higgins, and P. J. Farley, “The influence of bubble plumes on air-seawater gas transfer velocities,” J. Geophys. Res. 101, 12027–12041 (1996).
    [Crossref]
  2. M. D. Anguelova and F. Webster, “Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps,” J. Geophys. Res. 111, 3017 (2006).
    [Crossref]
  3. W. Asher, J. Edson, W. McGillis, R. Wanninkhof, D. Ho, and T. Litchendorf, “Fractional area whitecap coverage and air-sea gas transfer velocities measured during GasEx-98,” in Gas Transfer at Water Surfaces, M. A. Donelan, W. M. Drennan, E. S. Saltzman, and R. Wanninkhof, eds. (American Geophysical Union, 2002).
  4. S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks, “Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean,” Ocean Sci. 9, 133–145 (2013).
    [Crossref]
  5. G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, and E. Vignati, “Production of sea spray aerosol in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
    [Crossref]
  6. A. D. Clarke, S. R. Owens, and J. Zhou, “An ultra fine sea-salt flux from breaking wave: Implications for cloud condensation nuclei in the remote marine atmosphere,” J. Geophys. Res. 111, 6202 (2006).
    [Crossref]
  7. R. Frouin, S. Iacobellis, and P.-Y. Deschamps, “Influence of oceanic whitecaps on the global radiation budget,” Geophys. Res. Lett. 28, 1523–1526 (2001).
    [Crossref]
  8. A. H. Callaghan and M. White, “Automated processing of sea surface images for the determination of whitecap coverage,” J. Atmos. Ocean. Technol. 26, 383–394 (2009).
    [Crossref]
  9. M. Stramska and T. Petelski, “Observations of oceanic whitecaps in the north polar waters of the Atlantic,” J. Geophys. Res. 108, 3086 (2003).
    [Crossref]
  10. F. J. Wentz, “Measurement of oceanic wind vector using satellite microwave radiometers,” IEEE Trans. Geosci. Remote Sens. 30, 960–972 (1992).
    [Crossref]
  11. R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).
    [Crossref]
  12. I. M. Brooks, et al., “Physical exchanges at the air-sea interface: UK-SOLAS field measurements,” Bull. Am. Meteorol. Soc. 90, 629–644 (2009).
    [Crossref]
  13. R. S. Al-Lashi, S. R. Gunn, E. G. Webb, and H. Czerski, “A novel high-resolution optical instrument for imaging oceanic bubbles,” IEEE J. Ocean. Eng. 43, 72–82 (2018).
    [Crossref]
  14. R. W. Pascal, M. J. Yelland, M. A. Srokosz, B. I. Moat, E. M. Waugh, D. H. Comben, A. G. Cansdale, and M. C. Hartman, “A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean,” J. Atmos. Ocean. Technol. 28, 590–605 (2011).
    [Crossref]
  15. C. Lafon, J. Piazzola, P. Forget, and S. Despiau, “Whitecap coverage in coastal environment for steady and unsteady wave field conditions,” J. Mar. Syst. 66, 38–46 (2007).
    [Crossref]
  16. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
    [Crossref]
  17. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2008).
  18. M. S. Nixon and A. S. Aguado, Feature Extraction & Image Processing for Computer Vision (Newnes, 2002).
  19. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).
    [Crossref]
  20. S. Suzuki and K. Abe, “Topological structural analysis of digitized binary images by border following,” Comput. Vis. Graph. Image Process. 30, 32–46 (1985).
    [Crossref]
  21. K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University, 2010).

2018 (1)

R. S. Al-Lashi, S. R. Gunn, E. G. Webb, and H. Czerski, “A novel high-resolution optical instrument for imaging oceanic bubbles,” IEEE J. Ocean. Eng. 43, 72–82 (2018).
[Crossref]

2013 (1)

S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks, “Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean,” Ocean Sci. 9, 133–145 (2013).
[Crossref]

2011 (1)

R. W. Pascal, M. J. Yelland, M. A. Srokosz, B. I. Moat, E. M. Waugh, D. H. Comben, A. G. Cansdale, and M. C. Hartman, “A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean,” J. Atmos. Ocean. Technol. 28, 590–605 (2011).
[Crossref]

2009 (2)

I. M. Brooks, et al., “Physical exchanges at the air-sea interface: UK-SOLAS field measurements,” Bull. Am. Meteorol. Soc. 90, 629–644 (2009).
[Crossref]

A. H. Callaghan and M. White, “Automated processing of sea surface images for the determination of whitecap coverage,” J. Atmos. Ocean. Technol. 26, 383–394 (2009).
[Crossref]

2007 (1)

C. Lafon, J. Piazzola, P. Forget, and S. Despiau, “Whitecap coverage in coastal environment for steady and unsteady wave field conditions,” J. Mar. Syst. 66, 38–46 (2007).
[Crossref]

2006 (2)

A. D. Clarke, S. R. Owens, and J. Zhou, “An ultra fine sea-salt flux from breaking wave: Implications for cloud condensation nuclei in the remote marine atmosphere,” J. Geophys. Res. 111, 6202 (2006).
[Crossref]

M. D. Anguelova and F. Webster, “Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps,” J. Geophys. Res. 111, 3017 (2006).
[Crossref]

2003 (1)

M. Stramska and T. Petelski, “Observations of oceanic whitecaps in the north polar waters of the Atlantic,” J. Geophys. Res. 108, 3086 (2003).
[Crossref]

2001 (1)

R. Frouin, S. Iacobellis, and P.-Y. Deschamps, “Influence of oceanic whitecaps on the global radiation budget,” Geophys. Res. Lett. 28, 1523–1526 (2001).
[Crossref]

2000 (2)

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, and E. Vignati, “Production of sea spray aerosol in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[Crossref]

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
[Crossref]

1996 (2)

R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).
[Crossref]

W. E. Asher, L. M. Karle, B. J. Higgins, and P. J. Farley, “The influence of bubble plumes on air-seawater gas transfer velocities,” J. Geophys. Res. 101, 12027–12041 (1996).
[Crossref]

1992 (1)

F. J. Wentz, “Measurement of oceanic wind vector using satellite microwave radiometers,” IEEE Trans. Geosci. Remote Sens. 30, 960–972 (1992).
[Crossref]

1985 (1)

S. Suzuki and K. Abe, “Topological structural analysis of digitized binary images by border following,” Comput. Vis. Graph. Image Process. 30, 32–46 (1985).
[Crossref]

1979 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).
[Crossref]

Abe, K.

S. Suzuki and K. Abe, “Topological structural analysis of digitized binary images by border following,” Comput. Vis. Graph. Image Process. 30, 32–46 (1985).
[Crossref]

Aguado, A. S.

M. S. Nixon and A. S. Aguado, Feature Extraction & Image Processing for Computer Vision (Newnes, 2002).

Al-Lashi, R. S.

R. S. Al-Lashi, S. R. Gunn, E. G. Webb, and H. Czerski, “A novel high-resolution optical instrument for imaging oceanic bubbles,” IEEE J. Ocean. Eng. 43, 72–82 (2018).
[Crossref]

Anguelova, M. D.

M. D. Anguelova and F. Webster, “Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps,” J. Geophys. Res. 111, 3017 (2006).
[Crossref]

Asher, W.

W. Asher, J. Edson, W. McGillis, R. Wanninkhof, D. Ho, and T. Litchendorf, “Fractional area whitecap coverage and air-sea gas transfer velocities measured during GasEx-98,” in Gas Transfer at Water Surfaces, M. A. Donelan, W. M. Drennan, E. S. Saltzman, and R. Wanninkhof, eds. (American Geophysical Union, 2002).

Asher, W. E.

W. E. Asher, L. M. Karle, B. J. Higgins, and P. J. Farley, “The influence of bubble plumes on air-seawater gas transfer velocities,” J. Geophys. Res. 101, 12027–12041 (1996).
[Crossref]

Bence, S. J.

K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University, 2010).

Brooks, B.

S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks, “Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean,” Ocean Sci. 9, 133–145 (2013).
[Crossref]

Brooks, I. M.

S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks, “Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean,” Ocean Sci. 9, 133–145 (2013).
[Crossref]

I. M. Brooks, et al., “Physical exchanges at the air-sea interface: UK-SOLAS field measurements,” Bull. Am. Meteorol. Soc. 90, 629–644 (2009).
[Crossref]

Callaghan, A. H.

A. H. Callaghan and M. White, “Automated processing of sea surface images for the determination of whitecap coverage,” J. Atmos. Ocean. Technol. 26, 383–394 (2009).
[Crossref]

Cansdale, A. G.

R. W. Pascal, M. J. Yelland, M. A. Srokosz, B. I. Moat, E. M. Waugh, D. H. Comben, A. G. Cansdale, and M. C. Hartman, “A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean,” J. Atmos. Ocean. Technol. 28, 590–605 (2011).
[Crossref]

Clarke, A. D.

A. D. Clarke, S. R. Owens, and J. Zhou, “An ultra fine sea-salt flux from breaking wave: Implications for cloud condensation nuclei in the remote marine atmosphere,” J. Geophys. Res. 111, 6202 (2006).
[Crossref]

Comben, D. H.

R. W. Pascal, M. J. Yelland, M. A. Srokosz, B. I. Moat, E. M. Waugh, D. H. Comben, A. G. Cansdale, and M. C. Hartman, “A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean,” J. Atmos. Ocean. Technol. 28, 590–605 (2011).
[Crossref]

Czerski, H.

R. S. Al-Lashi, S. R. Gunn, E. G. Webb, and H. Czerski, “A novel high-resolution optical instrument for imaging oceanic bubbles,” IEEE J. Ocean. Eng. 43, 72–82 (2018).
[Crossref]

de Leeuw, G.

S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks, “Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean,” Ocean Sci. 9, 133–145 (2013).
[Crossref]

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, and E. Vignati, “Production of sea spray aerosol in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[Crossref]

Deschamps, P.-Y.

R. Frouin, S. Iacobellis, and P.-Y. Deschamps, “Influence of oceanic whitecaps on the global radiation budget,” Geophys. Res. Lett. 28, 1523–1526 (2001).
[Crossref]

R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).
[Crossref]

Despiau, S.

C. Lafon, J. Piazzola, P. Forget, and S. Despiau, “Whitecap coverage in coastal environment for steady and unsteady wave field conditions,” J. Mar. Syst. 66, 38–46 (2007).
[Crossref]

Edson, J.

W. Asher, J. Edson, W. McGillis, R. Wanninkhof, D. Ho, and T. Litchendorf, “Fractional area whitecap coverage and air-sea gas transfer velocities measured during GasEx-98,” in Gas Transfer at Water Surfaces, M. A. Donelan, W. M. Drennan, E. S. Saltzman, and R. Wanninkhof, eds. (American Geophysical Union, 2002).

Farley, P. J.

W. E. Asher, L. M. Karle, B. J. Higgins, and P. J. Farley, “The influence of bubble plumes on air-seawater gas transfer velocities,” J. Geophys. Res. 101, 12027–12041 (1996).
[Crossref]

Forget, P.

C. Lafon, J. Piazzola, P. Forget, and S. Despiau, “Whitecap coverage in coastal environment for steady and unsteady wave field conditions,” J. Mar. Syst. 66, 38–46 (2007).
[Crossref]

Frouin, R.

R. Frouin, S. Iacobellis, and P.-Y. Deschamps, “Influence of oceanic whitecaps on the global radiation budget,” Geophys. Res. Lett. 28, 1523–1526 (2001).
[Crossref]

R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).
[Crossref]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2008).

Gunn, S. R.

R. S. Al-Lashi, S. R. Gunn, E. G. Webb, and H. Czerski, “A novel high-resolution optical instrument for imaging oceanic bubbles,” IEEE J. Ocean. Eng. 43, 72–82 (2018).
[Crossref]

Hartman, M. C.

R. W. Pascal, M. J. Yelland, M. A. Srokosz, B. I. Moat, E. M. Waugh, D. H. Comben, A. G. Cansdale, and M. C. Hartman, “A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean,” J. Atmos. Ocean. Technol. 28, 590–605 (2011).
[Crossref]

Higgins, B. J.

W. E. Asher, L. M. Karle, B. J. Higgins, and P. J. Farley, “The influence of bubble plumes on air-seawater gas transfer velocities,” J. Geophys. Res. 101, 12027–12041 (1996).
[Crossref]

Hill, M.

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, and E. Vignati, “Production of sea spray aerosol in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[Crossref]

Ho, D.

W. Asher, J. Edson, W. McGillis, R. Wanninkhof, D. Ho, and T. Litchendorf, “Fractional area whitecap coverage and air-sea gas transfer velocities measured during GasEx-98,” in Gas Transfer at Water Surfaces, M. A. Donelan, W. M. Drennan, E. S. Saltzman, and R. Wanninkhof, eds. (American Geophysical Union, 2002).

Hobson, M. P.

K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University, 2010).

Iacobellis, S.

R. Frouin, S. Iacobellis, and P.-Y. Deschamps, “Influence of oceanic whitecaps on the global radiation budget,” Geophys. Res. Lett. 28, 1523–1526 (2001).
[Crossref]

Karle, L. M.

W. E. Asher, L. M. Karle, B. J. Higgins, and P. J. Farley, “The influence of bubble plumes on air-seawater gas transfer velocities,” J. Geophys. Res. 101, 12027–12041 (1996).
[Crossref]

Lafon, C.

C. Lafon, J. Piazzola, P. Forget, and S. Despiau, “Whitecap coverage in coastal environment for steady and unsteady wave field conditions,” J. Mar. Syst. 66, 38–46 (2007).
[Crossref]

Litchendorf, T.

W. Asher, J. Edson, W. McGillis, R. Wanninkhof, D. Ho, and T. Litchendorf, “Fractional area whitecap coverage and air-sea gas transfer velocities measured during GasEx-98,” in Gas Transfer at Water Surfaces, M. A. Donelan, W. M. Drennan, E. S. Saltzman, and R. Wanninkhof, eds. (American Geophysical Union, 2002).

McGillis, W.

W. Asher, J. Edson, W. McGillis, R. Wanninkhof, D. Ho, and T. Litchendorf, “Fractional area whitecap coverage and air-sea gas transfer velocities measured during GasEx-98,” in Gas Transfer at Water Surfaces, M. A. Donelan, W. M. Drennan, E. S. Saltzman, and R. Wanninkhof, eds. (American Geophysical Union, 2002).

Moat, B. I.

S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks, “Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean,” Ocean Sci. 9, 133–145 (2013).
[Crossref]

R. W. Pascal, M. J. Yelland, M. A. Srokosz, B. I. Moat, E. M. Waugh, D. H. Comben, A. G. Cansdale, and M. C. Hartman, “A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean,” J. Atmos. Ocean. Technol. 28, 590–605 (2011).
[Crossref]

Neele, F. P.

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, and E. Vignati, “Production of sea spray aerosol in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[Crossref]

Nixon, M. S.

M. S. Nixon and A. S. Aguado, Feature Extraction & Image Processing for Computer Vision (Newnes, 2002).

Norris, S. J.

S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks, “Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean,” Ocean Sci. 9, 133–145 (2013).
[Crossref]

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).
[Crossref]

Owens, S. R.

A. D. Clarke, S. R. Owens, and J. Zhou, “An ultra fine sea-salt flux from breaking wave: Implications for cloud condensation nuclei in the remote marine atmosphere,” J. Geophys. Res. 111, 6202 (2006).
[Crossref]

Pascal, R. W.

S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks, “Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean,” Ocean Sci. 9, 133–145 (2013).
[Crossref]

R. W. Pascal, M. J. Yelland, M. A. Srokosz, B. I. Moat, E. M. Waugh, D. H. Comben, A. G. Cansdale, and M. C. Hartman, “A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean,” J. Atmos. Ocean. Technol. 28, 590–605 (2011).
[Crossref]

Petelski, T.

M. Stramska and T. Petelski, “Observations of oceanic whitecaps in the north polar waters of the Atlantic,” J. Geophys. Res. 108, 3086 (2003).
[Crossref]

Piazzola, J.

C. Lafon, J. Piazzola, P. Forget, and S. Despiau, “Whitecap coverage in coastal environment for steady and unsteady wave field conditions,” J. Mar. Syst. 66, 38–46 (2007).
[Crossref]

Riley, K. F.

K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University, 2010).

Schwindling, M.

R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).
[Crossref]

Smith, M. H.

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, and E. Vignati, “Production of sea spray aerosol in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[Crossref]

Srokosz, M. A.

R. W. Pascal, M. J. Yelland, M. A. Srokosz, B. I. Moat, E. M. Waugh, D. H. Comben, A. G. Cansdale, and M. C. Hartman, “A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean,” J. Atmos. Ocean. Technol. 28, 590–605 (2011).
[Crossref]

Stramska, M.

M. Stramska and T. Petelski, “Observations of oceanic whitecaps in the north polar waters of the Atlantic,” J. Geophys. Res. 108, 3086 (2003).
[Crossref]

Suzuki, S.

S. Suzuki and K. Abe, “Topological structural analysis of digitized binary images by border following,” Comput. Vis. Graph. Image Process. 30, 32–46 (1985).
[Crossref]

Vignati, E.

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, and E. Vignati, “Production of sea spray aerosol in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[Crossref]

Wanninkhof, R.

W. Asher, J. Edson, W. McGillis, R. Wanninkhof, D. Ho, and T. Litchendorf, “Fractional area whitecap coverage and air-sea gas transfer velocities measured during GasEx-98,” in Gas Transfer at Water Surfaces, M. A. Donelan, W. M. Drennan, E. S. Saltzman, and R. Wanninkhof, eds. (American Geophysical Union, 2002).

Waugh, E. M.

R. W. Pascal, M. J. Yelland, M. A. Srokosz, B. I. Moat, E. M. Waugh, D. H. Comben, A. G. Cansdale, and M. C. Hartman, “A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean,” J. Atmos. Ocean. Technol. 28, 590–605 (2011).
[Crossref]

Webb, E. G.

R. S. Al-Lashi, S. R. Gunn, E. G. Webb, and H. Czerski, “A novel high-resolution optical instrument for imaging oceanic bubbles,” IEEE J. Ocean. Eng. 43, 72–82 (2018).
[Crossref]

Webster, F.

M. D. Anguelova and F. Webster, “Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps,” J. Geophys. Res. 111, 3017 (2006).
[Crossref]

Wentz, F. J.

F. J. Wentz, “Measurement of oceanic wind vector using satellite microwave radiometers,” IEEE Trans. Geosci. Remote Sens. 30, 960–972 (1992).
[Crossref]

White, M.

A. H. Callaghan and M. White, “Automated processing of sea surface images for the determination of whitecap coverage,” J. Atmos. Ocean. Technol. 26, 383–394 (2009).
[Crossref]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2008).

Yelland, M. J.

S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks, “Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean,” Ocean Sci. 9, 133–145 (2013).
[Crossref]

R. W. Pascal, M. J. Yelland, M. A. Srokosz, B. I. Moat, E. M. Waugh, D. H. Comben, A. G. Cansdale, and M. C. Hartman, “A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean,” J. Atmos. Ocean. Technol. 28, 590–605 (2011).
[Crossref]

Zhang, Z.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
[Crossref]

Zhou, J.

A. D. Clarke, S. R. Owens, and J. Zhou, “An ultra fine sea-salt flux from breaking wave: Implications for cloud condensation nuclei in the remote marine atmosphere,” J. Geophys. Res. 111, 6202 (2006).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

I. M. Brooks, et al., “Physical exchanges at the air-sea interface: UK-SOLAS field measurements,” Bull. Am. Meteorol. Soc. 90, 629–644 (2009).
[Crossref]

Comput. Vis. Graph. Image Process. (1)

S. Suzuki and K. Abe, “Topological structural analysis of digitized binary images by border following,” Comput. Vis. Graph. Image Process. 30, 32–46 (1985).
[Crossref]

Geophys. Res. Lett. (1)

R. Frouin, S. Iacobellis, and P.-Y. Deschamps, “Influence of oceanic whitecaps on the global radiation budget,” Geophys. Res. Lett. 28, 1523–1526 (2001).
[Crossref]

IEEE J. Ocean. Eng. (1)

R. S. Al-Lashi, S. R. Gunn, E. G. Webb, and H. Czerski, “A novel high-resolution optical instrument for imaging oceanic bubbles,” IEEE J. Ocean. Eng. 43, 72–82 (2018).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

F. J. Wentz, “Measurement of oceanic wind vector using satellite microwave radiometers,” IEEE Trans. Geosci. Remote Sens. 30, 960–972 (1992).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
[Crossref]

IEEE Trans. Syst. Man Cybern. (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).
[Crossref]

J. Atmos. Ocean. Technol. (2)

R. W. Pascal, M. J. Yelland, M. A. Srokosz, B. I. Moat, E. M. Waugh, D. H. Comben, A. G. Cansdale, and M. C. Hartman, “A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean,” J. Atmos. Ocean. Technol. 28, 590–605 (2011).
[Crossref]

A. H. Callaghan and M. White, “Automated processing of sea surface images for the determination of whitecap coverage,” J. Atmos. Ocean. Technol. 26, 383–394 (2009).
[Crossref]

J. Geophys. Res. (6)

M. Stramska and T. Petelski, “Observations of oceanic whitecaps in the north polar waters of the Atlantic,” J. Geophys. Res. 108, 3086 (2003).
[Crossref]

R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).
[Crossref]

W. E. Asher, L. M. Karle, B. J. Higgins, and P. J. Farley, “The influence of bubble plumes on air-seawater gas transfer velocities,” J. Geophys. Res. 101, 12027–12041 (1996).
[Crossref]

M. D. Anguelova and F. Webster, “Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps,” J. Geophys. Res. 111, 3017 (2006).
[Crossref]

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, and E. Vignati, “Production of sea spray aerosol in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[Crossref]

A. D. Clarke, S. R. Owens, and J. Zhou, “An ultra fine sea-salt flux from breaking wave: Implications for cloud condensation nuclei in the remote marine atmosphere,” J. Geophys. Res. 111, 6202 (2006).
[Crossref]

J. Mar. Syst. (1)

C. Lafon, J. Piazzola, P. Forget, and S. Despiau, “Whitecap coverage in coastal environment for steady and unsteady wave field conditions,” J. Mar. Syst. 66, 38–46 (2007).
[Crossref]

Ocean Sci. (1)

S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks, “Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean,” Ocean Sci. 9, 133–145 (2013).
[Crossref]

Other (4)

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2008).

M. S. Nixon and A. S. Aguado, Feature Extraction & Image Processing for Computer Vision (Newnes, 2002).

W. Asher, J. Edson, W. McGillis, R. Wanninkhof, D. Ho, and T. Litchendorf, “Fractional area whitecap coverage and air-sea gas transfer velocities measured during GasEx-98,” in Gas Transfer at Water Surfaces, M. A. Donelan, W. M. Drennan, E. S. Saltzman, and R. Wanninkhof, eds. (American Geophysical Union, 2002).

K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Hardware components of the whitecap instrument. (a) shows the JAI camera and the single-board computer assembly inside the buoy dome. The single-board assembly in (b) consists of the following components: power management board, single-board computer, two solid-state drives, and the LCD display module.
Fig. 2.
Fig. 2. Spar buoy during deployment in the ocean. The length of the spar buoy is 11 m. The whitecap-imaging instrument discussed in this paper is fixed inside the spar buoy.
Fig. 3.
Fig. 3. Block diagram of the whitecap-imaging instrument architecture. The light lines correspond to the power transfer from the power management board to the other electronic components, the thick bold lines correspond to the data transfer from and to the single-board computer, and the broken lines represent the single-board computer control on other devices.
Fig. 4.
Fig. 4. Sample of the whitecap camera images, collected during deployment in the North Atlantic Ocean in 2013. The images in (a) and (b) contain whitecap patches. The images in (c) and (d) result from covering the buoy’s dome by the oceanic wave.
Fig. 5.
Fig. 5. Image correction by the calibration parameters. (a) shows the original distorted image before the calibration. The geometrical distortion is removed in (b) after performing the calibration.
Fig. 6.
Fig. 6. Whitecap extraction algorithm steps: (a) pre-filtering and adaptive thresholding, (b) contours identification, (c) after third post-filtering stage, and (d) after applying post-filtering operation. The red and green lines correspond to the identified contours and bounding rectangles, respectively.

Metrics