Abstract

In this work, an octagonal Penrose-type photonic quasi-crystal fiber (PQF) with dual-cladding is proposed. By optimizing three geometric degrees of freedom, the PQF exhibits ultra-flattened near-zero dispersion of 0.014±0.293  ps/nm/km, ultra-low order confinement loss of 104  dB/km, and large effective mode area of over 16.2  μm2 in a broadband of wavelength from 1.27 to 1.67 μm, covering almost all optical communication bands. At the common communication wavelength 1.55 μm, completely opposite trends of the dispersion and the confinement loss varying with the air-filling factor in the inner cladding are demonstrated. In addition, the robustness of optical properties including dispersion, confinement loss, and effective mode area in this PQF is discussed, assuming a deviation ±3% of all air holes.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dodecagonal photonic quasi-crystal fiber with high birefringence

Weicheng Cai, Exian Liu, Bo Feng, Wei Xiao, Hongfei Liu, Ziming Wang, Shuo Wang, Taiyuan Liang, Jianqiang Liu, and Jianjun Liu
J. Opt. Soc. Am. A 33(10) 2108-2114 (2016)

Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses

Kunimasa Saitoh, Nikolaos Florous, and Masanori Koshiba
Opt. Express 13(21) 8365-8371 (2005)

References

  • View by:
  • |
  • |
  • |

  1. D. Shechtman, I. Blech, and D. Gratias, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
    [Crossref]
  2. Y. Chan, C. Chan, and Z. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).
    [Crossref]
  3. C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).
    [Crossref]
  4. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).
    [Crossref]
  5. Y. Wang, Z. Feng, X. Xu, B. Cheng, and D. Zhang, “Uncoupled defect modes in a two-dimensional quasiperiodic photonic crystal,” Europhys. Lett. 64, 185–189 (2003).
    [Crossref]
  6. K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 84, 4875–4877 (2004).
    [Crossref]
  7. Z. Feng, X. Zhang, Y. Wang, Z. Li, B. Cheng, and D. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94, 247402 (2005).
    [Crossref]
  8. J. Liu, E. Liu, T. Zhang, and Z. Fan, “Thickness dependence of two-dimensional photonic quasicrystal lens imaging characteristics,” Solid State Commun. 201, 68–71 (2015).
    [Crossref]
  9. J. Liu, E. Liu, Z. Fan, and X. Zhang, “Dielectric refractive index dependence of the focusing properties of a dielectric-cylinder-type decagonal photonic quasicrystal flat lens and its photon localization,” Appl. Phys. Express 8, 112003 (2015).
    [Crossref]
  10. J. Liu, E. Liu, and Z. Fan, “Width dependence of two-dimensional photonic quasicrystal flat lens imaging characteristics,” J. Mod. Opt. 63, 692–696 (2016).
    [Crossref]
  11. B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Appl. Phys. Express 9, 062003 (2016).
    [Crossref]
  12. J. Liu, W. Tan, E. Liu, H. Hu, Z. Fan, T. Zhang, and X. Zhang, “Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms,” J. Opt. Soc. Am. A 33, 978–983 (2016).
    [Crossref]
  13. Y. Zhao, Z. Wang, J. Jiang, X. Chen, C. Yue, J. Wang, and J. Liu, “Add-drop filter with compound structure of photonic crystal and photonic quasicrystal,” J. Infrared Millimeter Waves 36, 342–348 (2017).
  14. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
    [Crossref]
  15. R. Bhattacharya and S. Konar, “Design of a photonic crystal fiber with zero dispersion wavelength near 0.65  μm,” Fiber Integr. Opt. 27, 89–98 (2008).
    [Crossref]
  16. S. Konar, S. K. Ghorai, and R. Bhattacharya, “Highly birefringent microstructure fiber with zero dispersion wavelength at 0.64 micrometer,” Fiber Integr. Opt. 28, 138–145 (2009).
    [Crossref]
  17. M. Sharma, N. Borogohain, and S. Konar, “Index guiding photonic crystal fibers with large birefringence and walk-off,” J. Lightwave Technol. 31, 3339–3344 (2013).
    [Crossref]
  18. S. Kim, C. S. Kee, and J. Lee, “Novel optical properties of six-fold symmetric photonic quasicrystal fibers,” Opt. Express 15, 13221–13226 (2007).
    [Crossref]
  19. W. Su, S. Lou, H. Zou, and B. Han, “Design of a highly nonlinear twin bow-tie polymer photonic quasi-crystal fiber with high birefringence,” Infrared Phys. Technol. 63, 62–68 (2014).
    [Crossref]
  20. S. Sivabalan and J. P. Raina, “High normal dispersion and large mode area photonic quasi-crystal fiber stretcher,” IEEE Photon. Technol. Lett. 23, 1139–1141 (2011).
    [Crossref]
  21. Y. Li, W. Fan, and Q. Sheng, “A novel photonic quasicrystal fiber with broadband large negative dispersion,” Chin. Phys. Lett. 27, 114211 (2010).
    [Crossref]
  22. S. Rajalingam and Z. C. Alex, “Fivefold symmetric photonic quasi-crystal fiber for dispersion compensation from S- to L-band and optimized at 1.55  μm,” Adv. OptoElectron. 2015, 417401 (2015).
    [Crossref]
  23. S. Kim and C. S. Kee, “Dispersion properties of dual-core photonic-quasicrystal fiber,” Opt. Express 17, 15885–15890 (2009).
    [Crossref]
  24. W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
    [Crossref]
  25. W. Su, S. Lou, H. Zou, and B. Han, “Highly birefringent ZBLAN photonic quasi-crystal fiber with four circular air holes in the core,” Infrared Phys. Technol. 66, 97–102 (2014).
    [Crossref]
  26. W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” J. Opt. Soc. Am. A 33, 2108–2114 (2016).
    [Crossref]
  27. H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55, 036101 (2016).
    [Crossref]
  28. M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
    [Crossref]
  29. N. Florous, S. Kunimasa, and K. Masanori, “The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: towards high speed reconfigurable transmission platforms,” Opt. Express 14, 901–913 (2006).
    [Crossref]
  30. T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightwave Technol. 23, 4178–4183 (2005).
    [Crossref]
  31. W. Su, S. Lou, H. Zou, and B. Han, “A highly nonlinear photonic quasi-crystal fiber with low confinement loss and flattened dispersion,” Opt. Fiber Technol. 20, 473–477 (2014).
    [Crossref]
  32. T. Zhao, S. Lou, W. Su, and X. Wang, “Design of an As2Se3-based photonic quasi-crystal fiber with highly nonlinear and dual zero-dispersion wavelengths,” J. Mod. Opt. 63, 139–145 (2016).
    [Crossref]
  33. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  34. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23, 4477–4485 (1984).
    [Crossref]
  35. T. P. White, R. C. McPhedran, and C. M. de Sterke, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660–1662 (2001).
    [Crossref]
  36. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341–348 (2002).
    [Crossref]
  37. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
    [Crossref]
  38. P. S. Maji and P. R. Chaudhuri, “Studies of the modal properties of circularly photonic crystal fiber (C-PCF) for high power applications,” Photon. Nanostruct. 19, 12–23 (2016).
    [Crossref]
  39. S. Lou, Z. Tang, and L. Wang, “Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler,” Appl. Opt. 50, 2016–2023 (2011).
    [Crossref]
  40. R. T. Bise and D. J. Trevor, “Solgel-derived microstructured fibers: fabrication and characterization,” in OFC/NFOEC Technical Digest. Optical Fiber Communication Conference (2005), Vol. 3, pp. 1–3.

2017 (1)

Y. Zhao, Z. Wang, J. Jiang, X. Chen, C. Yue, J. Wang, and J. Liu, “Add-drop filter with compound structure of photonic crystal and photonic quasicrystal,” J. Infrared Millimeter Waves 36, 342–348 (2017).

2016 (9)

J. Liu, E. Liu, and Z. Fan, “Width dependence of two-dimensional photonic quasicrystal flat lens imaging characteristics,” J. Mod. Opt. 63, 692–696 (2016).
[Crossref]

B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Appl. Phys. Express 9, 062003 (2016).
[Crossref]

J. Liu, W. Tan, E. Liu, H. Hu, Z. Fan, T. Zhang, and X. Zhang, “Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms,” J. Opt. Soc. Am. A 33, 978–983 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” J. Opt. Soc. Am. A 33, 2108–2114 (2016).
[Crossref]

H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55, 036101 (2016).
[Crossref]

M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
[Crossref]

T. Zhao, S. Lou, W. Su, and X. Wang, “Design of an As2Se3-based photonic quasi-crystal fiber with highly nonlinear and dual zero-dispersion wavelengths,” J. Mod. Opt. 63, 139–145 (2016).
[Crossref]

P. S. Maji and P. R. Chaudhuri, “Studies of the modal properties of circularly photonic crystal fiber (C-PCF) for high power applications,” Photon. Nanostruct. 19, 12–23 (2016).
[Crossref]

2015 (3)

S. Rajalingam and Z. C. Alex, “Fivefold symmetric photonic quasi-crystal fiber for dispersion compensation from S- to L-band and optimized at 1.55  μm,” Adv. OptoElectron. 2015, 417401 (2015).
[Crossref]

J. Liu, E. Liu, T. Zhang, and Z. Fan, “Thickness dependence of two-dimensional photonic quasicrystal lens imaging characteristics,” Solid State Commun. 201, 68–71 (2015).
[Crossref]

J. Liu, E. Liu, Z. Fan, and X. Zhang, “Dielectric refractive index dependence of the focusing properties of a dielectric-cylinder-type decagonal photonic quasicrystal flat lens and its photon localization,” Appl. Phys. Express 8, 112003 (2015).
[Crossref]

2014 (3)

W. Su, S. Lou, H. Zou, and B. Han, “Design of a highly nonlinear twin bow-tie polymer photonic quasi-crystal fiber with high birefringence,” Infrared Phys. Technol. 63, 62–68 (2014).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “Highly birefringent ZBLAN photonic quasi-crystal fiber with four circular air holes in the core,” Infrared Phys. Technol. 66, 97–102 (2014).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “A highly nonlinear photonic quasi-crystal fiber with low confinement loss and flattened dispersion,” Opt. Fiber Technol. 20, 473–477 (2014).
[Crossref]

2013 (1)

2011 (2)

S. Sivabalan and J. P. Raina, “High normal dispersion and large mode area photonic quasi-crystal fiber stretcher,” IEEE Photon. Technol. Lett. 23, 1139–1141 (2011).
[Crossref]

S. Lou, Z. Tang, and L. Wang, “Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler,” Appl. Opt. 50, 2016–2023 (2011).
[Crossref]

2010 (1)

Y. Li, W. Fan, and Q. Sheng, “A novel photonic quasicrystal fiber with broadband large negative dispersion,” Chin. Phys. Lett. 27, 114211 (2010).
[Crossref]

2009 (2)

S. Kim and C. S. Kee, “Dispersion properties of dual-core photonic-quasicrystal fiber,” Opt. Express 17, 15885–15890 (2009).
[Crossref]

S. Konar, S. K. Ghorai, and R. Bhattacharya, “Highly birefringent microstructure fiber with zero dispersion wavelength at 0.64 micrometer,” Fiber Integr. Opt. 28, 138–145 (2009).
[Crossref]

2008 (1)

R. Bhattacharya and S. Konar, “Design of a photonic crystal fiber with zero dispersion wavelength near 0.65  μm,” Fiber Integr. Opt. 27, 89–98 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (2)

T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightwave Technol. 23, 4178–4183 (2005).
[Crossref]

Z. Feng, X. Zhang, Y. Wang, Z. Li, B. Cheng, and D. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94, 247402 (2005).
[Crossref]

2004 (1)

K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 84, 4875–4877 (2004).
[Crossref]

2003 (2)

Y. Wang, Z. Feng, X. Xu, B. Cheng, and D. Zhang, “Uncoupled defect modes in a two-dimensional quasiperiodic photonic crystal,” Europhys. Lett. 64, 185–189 (2003).
[Crossref]

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[Crossref]

2002 (1)

2001 (1)

2000 (2)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[Crossref]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).
[Crossref]

1999 (1)

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).
[Crossref]

1998 (1)

Y. Chan, C. Chan, and Z. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[Crossref]

1984 (2)

D. Shechtman, I. Blech, and D. Gratias, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
[Crossref]

B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23, 4477–4485 (1984).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Alex, Z. C.

S. Rajalingam and Z. C. Alex, “Fivefold symmetric photonic quasi-crystal fiber for dispersion compensation from S- to L-band and optimized at 1.55  μm,” Adv. OptoElectron. 2015, 417401 (2015).
[Crossref]

Baba, T.

K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 84, 4875–4877 (2004).
[Crossref]

Babu, P. R.

M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
[Crossref]

Baumberg, J. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).
[Crossref]

Bhattacharya, R.

S. Konar, S. K. Ghorai, and R. Bhattacharya, “Highly birefringent microstructure fiber with zero dispersion wavelength at 0.64 micrometer,” Fiber Integr. Opt. 28, 138–145 (2009).
[Crossref]

R. Bhattacharya and S. Konar, “Design of a photonic crystal fiber with zero dispersion wavelength near 0.65  μm,” Fiber Integr. Opt. 27, 89–98 (2008).
[Crossref]

Bise, R. T.

R. T. Bise and D. J. Trevor, “Solgel-derived microstructured fibers: fabrication and characterization,” in OFC/NFOEC Technical Digest. Optical Fiber Communication Conference (2005), Vol. 3, pp. 1–3.

Blech, I.

D. Shechtman, I. Blech, and D. Gratias, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
[Crossref]

Borogohain, N.

Cai, W.

H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55, 036101 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
[Crossref]

B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Appl. Phys. Express 9, 062003 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” J. Opt. Soc. Am. A 33, 2108–2114 (2016).
[Crossref]

Chan, C.

Y. Chan, C. Chan, and Z. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[Crossref]

Chan, Y.

Y. Chan, C. Chan, and Z. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[Crossref]

Charlton, M. D. B.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).
[Crossref]

Chaudhuri, P. R.

P. S. Maji and P. R. Chaudhuri, “Studies of the modal properties of circularly photonic crystal fiber (C-PCF) for high power applications,” Photon. Nanostruct. 19, 12–23 (2016).
[Crossref]

Chen, X.

Y. Zhao, Z. Wang, J. Jiang, X. Chen, C. Yue, J. Wang, and J. Liu, “Add-drop filter with compound structure of photonic crystal and photonic quasicrystal,” J. Infrared Millimeter Waves 36, 342–348 (2017).

Cheng, B.

Z. Feng, X. Zhang, Y. Wang, Z. Li, B. Cheng, and D. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94, 247402 (2005).
[Crossref]

Y. Wang, Z. Feng, X. Xu, B. Cheng, and D. Zhang, “Uncoupled defect modes in a two-dimensional quasiperiodic photonic crystal,” Europhys. Lett. 64, 185–189 (2003).
[Crossref]

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).
[Crossref]

de Sterke, C. M.

Fan, W.

Y. Li, W. Fan, and Q. Sheng, “A novel photonic quasicrystal fiber with broadband large negative dispersion,” Chin. Phys. Lett. 27, 114211 (2010).
[Crossref]

Fan, Z.

J. Liu, E. Liu, and Z. Fan, “Width dependence of two-dimensional photonic quasicrystal flat lens imaging characteristics,” J. Mod. Opt. 63, 692–696 (2016).
[Crossref]

J. Liu, W. Tan, E. Liu, H. Hu, Z. Fan, T. Zhang, and X. Zhang, “Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms,” J. Opt. Soc. Am. A 33, 978–983 (2016).
[Crossref]

J. Liu, E. Liu, Z. Fan, and X. Zhang, “Dielectric refractive index dependence of the focusing properties of a dielectric-cylinder-type decagonal photonic quasicrystal flat lens and its photon localization,” Appl. Phys. Express 8, 112003 (2015).
[Crossref]

J. Liu, E. Liu, T. Zhang, and Z. Fan, “Thickness dependence of two-dimensional photonic quasicrystal lens imaging characteristics,” Solid State Commun. 201, 68–71 (2015).
[Crossref]

Feng, B.

B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Appl. Phys. Express 9, 062003 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
[Crossref]

H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55, 036101 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” J. Opt. Soc. Am. A 33, 2108–2114 (2016).
[Crossref]

Feng, Z.

Z. Feng, X. Zhang, Y. Wang, Z. Li, B. Cheng, and D. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94, 247402 (2005).
[Crossref]

Y. Wang, Z. Feng, X. Xu, B. Cheng, and D. Zhang, “Uncoupled defect modes in a two-dimensional quasiperiodic photonic crystal,” Europhys. Lett. 64, 185–189 (2003).
[Crossref]

Florous, N.

Gandhi, M. S. A.

M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
[Crossref]

Ghorai, S. K.

S. Konar, S. K. Ghorai, and R. Bhattacharya, “Highly birefringent microstructure fiber with zero dispersion wavelength at 0.64 micrometer,” Fiber Integr. Opt. 28, 138–145 (2009).
[Crossref]

Gratias, D.

D. Shechtman, I. Blech, and D. Gratias, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
[Crossref]

Han, B.

W. Su, S. Lou, H. Zou, and B. Han, “Highly birefringent ZBLAN photonic quasi-crystal fiber with four circular air holes in the core,” Infrared Phys. Technol. 66, 97–102 (2014).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “A highly nonlinear photonic quasi-crystal fiber with low confinement loss and flattened dispersion,” Opt. Fiber Technol. 20, 473–477 (2014).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “Design of a highly nonlinear twin bow-tie polymer photonic quasi-crystal fiber with high birefringence,” Infrared Phys. Technol. 63, 62–68 (2014).
[Crossref]

Hu, H.

Jiang, J.

Y. Zhao, Z. Wang, J. Jiang, X. Chen, C. Yue, J. Wang, and J. Liu, “Add-drop filter with compound structure of photonic crystal and photonic quasicrystal,” J. Infrared Millimeter Waves 36, 342–348 (2017).

Jin, C.

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).
[Crossref]

Kee, C. S.

Kim, S.

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[Crossref]

Konar, S.

M. Sharma, N. Borogohain, and S. Konar, “Index guiding photonic crystal fibers with large birefringence and walk-off,” J. Lightwave Technol. 31, 3339–3344 (2013).
[Crossref]

S. Konar, S. K. Ghorai, and R. Bhattacharya, “Highly birefringent microstructure fiber with zero dispersion wavelength at 0.64 micrometer,” Fiber Integr. Opt. 28, 138–145 (2009).
[Crossref]

R. Bhattacharya and S. Konar, “Design of a photonic crystal fiber with zero dispersion wavelength near 0.65  μm,” Fiber Integr. Opt. 27, 89–98 (2008).
[Crossref]

Kunimasa, S.

Lee, J.

Li, Y.

Y. Li, W. Fan, and Q. Sheng, “A novel photonic quasicrystal fiber with broadband large negative dispersion,” Chin. Phys. Lett. 27, 114211 (2010).
[Crossref]

Li, Z.

Z. Feng, X. Zhang, Y. Wang, Z. Li, B. Cheng, and D. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94, 247402 (2005).
[Crossref]

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).
[Crossref]

Liang, T.

W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
[Crossref]

B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Appl. Phys. Express 9, 062003 (2016).
[Crossref]

H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55, 036101 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” J. Opt. Soc. Am. A 33, 2108–2114 (2016).
[Crossref]

Liu, E.

W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” J. Opt. Soc. Am. A 33, 2108–2114 (2016).
[Crossref]

J. Liu, W. Tan, E. Liu, H. Hu, Z. Fan, T. Zhang, and X. Zhang, “Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms,” J. Opt. Soc. Am. A 33, 978–983 (2016).
[Crossref]

H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55, 036101 (2016).
[Crossref]

B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Appl. Phys. Express 9, 062003 (2016).
[Crossref]

J. Liu, E. Liu, and Z. Fan, “Width dependence of two-dimensional photonic quasicrystal flat lens imaging characteristics,” J. Mod. Opt. 63, 692–696 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
[Crossref]

J. Liu, E. Liu, Z. Fan, and X. Zhang, “Dielectric refractive index dependence of the focusing properties of a dielectric-cylinder-type decagonal photonic quasicrystal flat lens and its photon localization,” Appl. Phys. Express 8, 112003 (2015).
[Crossref]

J. Liu, E. Liu, T. Zhang, and Z. Fan, “Thickness dependence of two-dimensional photonic quasicrystal lens imaging characteristics,” Solid State Commun. 201, 68–71 (2015).
[Crossref]

Liu, H.

W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
[Crossref]

B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Appl. Phys. Express 9, 062003 (2016).
[Crossref]

H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55, 036101 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” J. Opt. Soc. Am. A 33, 2108–2114 (2016).
[Crossref]

Liu, J.

Y. Zhao, Z. Wang, J. Jiang, X. Chen, C. Yue, J. Wang, and J. Liu, “Add-drop filter with compound structure of photonic crystal and photonic quasicrystal,” J. Infrared Millimeter Waves 36, 342–348 (2017).

B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Appl. Phys. Express 9, 062003 (2016).
[Crossref]

J. Liu, E. Liu, and Z. Fan, “Width dependence of two-dimensional photonic quasicrystal flat lens imaging characteristics,” J. Mod. Opt. 63, 692–696 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
[Crossref]

H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55, 036101 (2016).
[Crossref]

J. Liu, W. Tan, E. Liu, H. Hu, Z. Fan, T. Zhang, and X. Zhang, “Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms,” J. Opt. Soc. Am. A 33, 978–983 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” J. Opt. Soc. Am. A 33, 2108–2114 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” J. Opt. Soc. Am. A 33, 2108–2114 (2016).
[Crossref]

J. Liu, E. Liu, T. Zhang, and Z. Fan, “Thickness dependence of two-dimensional photonic quasicrystal lens imaging characteristics,” Solid State Commun. 201, 68–71 (2015).
[Crossref]

J. Liu, E. Liu, Z. Fan, and X. Zhang, “Dielectric refractive index dependence of the focusing properties of a dielectric-cylinder-type decagonal photonic quasicrystal flat lens and its photon localization,” Appl. Phys. Express 8, 112003 (2015).
[Crossref]

Liu, Z.

Y. Chan, C. Chan, and Z. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[Crossref]

Lou, S.

T. Zhao, S. Lou, W. Su, and X. Wang, “Design of an As2Se3-based photonic quasi-crystal fiber with highly nonlinear and dual zero-dispersion wavelengths,” J. Mod. Opt. 63, 139–145 (2016).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “Highly birefringent ZBLAN photonic quasi-crystal fiber with four circular air holes in the core,” Infrared Phys. Technol. 66, 97–102 (2014).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “Design of a highly nonlinear twin bow-tie polymer photonic quasi-crystal fiber with high birefringence,” Infrared Phys. Technol. 63, 62–68 (2014).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “A highly nonlinear photonic quasi-crystal fiber with low confinement loss and flattened dispersion,” Opt. Fiber Technol. 20, 473–477 (2014).
[Crossref]

S. Lou, Z. Tang, and L. Wang, “Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler,” Appl. Opt. 50, 2016–2023 (2011).
[Crossref]

Maji, P. S.

P. S. Maji and P. R. Chaudhuri, “Studies of the modal properties of circularly photonic crystal fiber (C-PCF) for high power applications,” Photon. Nanostruct. 19, 12–23 (2016).
[Crossref]

Man, B.

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).
[Crossref]

Masanori, K.

Matsui, T.

McPhedran, R. C.

Mortensen, N. A.

Nakajima, K.

Netti, M. C.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).
[Crossref]

Notomi, M.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[Crossref]

Nozaki, K.

K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 84, 4875–4877 (2004).
[Crossref]

Parker, G. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).
[Crossref]

Raina, J. P.

S. Sivabalan and J. P. Raina, “High normal dispersion and large mode area photonic quasi-crystal fiber stretcher,” IEEE Photon. Technol. Lett. 23, 1139–1141 (2011).
[Crossref]

Rajalingam, S.

S. Rajalingam and Z. C. Alex, “Fivefold symmetric photonic quasi-crystal fiber for dispersion compensation from S- to L-band and optimized at 1.55  μm,” Adv. OptoElectron. 2015, 417401 (2015).
[Crossref]

Sankawa, I.

Senthilnathan, K.

M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
[Crossref]

Sharma, M.

Shechtman, D.

D. Shechtman, I. Blech, and D. Gratias, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
[Crossref]

Sheng, Q.

Y. Li, W. Fan, and Q. Sheng, “A novel photonic quasicrystal fiber with broadband large negative dispersion,” Chin. Phys. Lett. 27, 114211 (2010).
[Crossref]

Sivabalan, S.

M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
[Crossref]

S. Sivabalan and J. P. Raina, “High normal dispersion and large mode area photonic quasi-crystal fiber stretcher,” IEEE Photon. Technol. Lett. 23, 1139–1141 (2011).
[Crossref]

Su, W.

T. Zhao, S. Lou, W. Su, and X. Wang, “Design of an As2Se3-based photonic quasi-crystal fiber with highly nonlinear and dual zero-dispersion wavelengths,” J. Mod. Opt. 63, 139–145 (2016).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “Design of a highly nonlinear twin bow-tie polymer photonic quasi-crystal fiber with high birefringence,” Infrared Phys. Technol. 63, 62–68 (2014).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “A highly nonlinear photonic quasi-crystal fiber with low confinement loss and flattened dispersion,” Opt. Fiber Technol. 20, 473–477 (2014).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “Highly birefringent ZBLAN photonic quasi-crystal fiber with four circular air holes in the core,” Infrared Phys. Technol. 66, 97–102 (2014).
[Crossref]

Tan, W.

Tang, Z.

Tatian, B.

Trevor, D. J.

R. T. Bise and D. J. Trevor, “Solgel-derived microstructured fibers: fabrication and characterization,” in OFC/NFOEC Technical Digest. Optical Fiber Communication Conference (2005), Vol. 3, pp. 1–3.

Wang, J.

Y. Zhao, Z. Wang, J. Jiang, X. Chen, C. Yue, J. Wang, and J. Liu, “Add-drop filter with compound structure of photonic crystal and photonic quasicrystal,” J. Infrared Millimeter Waves 36, 342–348 (2017).

Wang, L.

Wang, S.

H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55, 036101 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
[Crossref]

B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Appl. Phys. Express 9, 062003 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” J. Opt. Soc. Am. A 33, 2108–2114 (2016).
[Crossref]

Wang, X.

T. Zhao, S. Lou, W. Su, and X. Wang, “Design of an As2Se3-based photonic quasi-crystal fiber with highly nonlinear and dual zero-dispersion wavelengths,” J. Mod. Opt. 63, 139–145 (2016).
[Crossref]

Wang, Y.

Z. Feng, X. Zhang, Y. Wang, Z. Li, B. Cheng, and D. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94, 247402 (2005).
[Crossref]

Y. Wang, Z. Feng, X. Xu, B. Cheng, and D. Zhang, “Uncoupled defect modes in a two-dimensional quasiperiodic photonic crystal,” Europhys. Lett. 64, 185–189 (2003).
[Crossref]

Wang, Z.

Y. Zhao, Z. Wang, J. Jiang, X. Chen, C. Yue, J. Wang, and J. Liu, “Add-drop filter with compound structure of photonic crystal and photonic quasicrystal,” J. Infrared Millimeter Waves 36, 342–348 (2017).

B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Appl. Phys. Express 9, 062003 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
[Crossref]

H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55, 036101 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” J. Opt. Soc. Am. A 33, 2108–2114 (2016).
[Crossref]

White, T. P.

Xiao, W.

H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55, 036101 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
[Crossref]

B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Appl. Phys. Express 9, 062003 (2016).
[Crossref]

W. Cai, E. Liu, B. Feng, W. Xiao, H. Liu, Z. Wang, S. Wang, T. Liang, J. Liu, and J. Liu, “Dodecagonal photonic quasi-crystal fiber with high birefringence,” J. Opt. Soc. Am. A 33, 2108–2114 (2016).
[Crossref]

Xu, X.

Y. Wang, Z. Feng, X. Xu, B. Cheng, and D. Zhang, “Uncoupled defect modes in a two-dimensional quasiperiodic photonic crystal,” Europhys. Lett. 64, 185–189 (2003).
[Crossref]

Yue, C.

Y. Zhao, Z. Wang, J. Jiang, X. Chen, C. Yue, J. Wang, and J. Liu, “Add-drop filter with compound structure of photonic crystal and photonic quasicrystal,” J. Infrared Millimeter Waves 36, 342–348 (2017).

Zhang, D.

Z. Feng, X. Zhang, Y. Wang, Z. Li, B. Cheng, and D. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94, 247402 (2005).
[Crossref]

Y. Wang, Z. Feng, X. Xu, B. Cheng, and D. Zhang, “Uncoupled defect modes in a two-dimensional quasiperiodic photonic crystal,” Europhys. Lett. 64, 185–189 (2003).
[Crossref]

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).
[Crossref]

Zhang, T.

J. Liu, W. Tan, E. Liu, H. Hu, Z. Fan, T. Zhang, and X. Zhang, “Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms,” J. Opt. Soc. Am. A 33, 978–983 (2016).
[Crossref]

J. Liu, E. Liu, T. Zhang, and Z. Fan, “Thickness dependence of two-dimensional photonic quasicrystal lens imaging characteristics,” Solid State Commun. 201, 68–71 (2015).
[Crossref]

Zhang, X.

J. Liu, W. Tan, E. Liu, H. Hu, Z. Fan, T. Zhang, and X. Zhang, “Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms,” J. Opt. Soc. Am. A 33, 978–983 (2016).
[Crossref]

J. Liu, E. Liu, Z. Fan, and X. Zhang, “Dielectric refractive index dependence of the focusing properties of a dielectric-cylinder-type decagonal photonic quasicrystal flat lens and its photon localization,” Appl. Phys. Express 8, 112003 (2015).
[Crossref]

Z. Feng, X. Zhang, Y. Wang, Z. Li, B. Cheng, and D. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94, 247402 (2005).
[Crossref]

Zhao, T.

T. Zhao, S. Lou, W. Su, and X. Wang, “Design of an As2Se3-based photonic quasi-crystal fiber with highly nonlinear and dual zero-dispersion wavelengths,” J. Mod. Opt. 63, 139–145 (2016).
[Crossref]

Zhao, Y.

Y. Zhao, Z. Wang, J. Jiang, X. Chen, C. Yue, J. Wang, and J. Liu, “Add-drop filter with compound structure of photonic crystal and photonic quasicrystal,” J. Infrared Millimeter Waves 36, 342–348 (2017).

Zhou, J.

Zoorob, M. E.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).
[Crossref]

Zou, H.

W. Su, S. Lou, H. Zou, and B. Han, “A highly nonlinear photonic quasi-crystal fiber with low confinement loss and flattened dispersion,” Opt. Fiber Technol. 20, 473–477 (2014).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “Design of a highly nonlinear twin bow-tie polymer photonic quasi-crystal fiber with high birefringence,” Infrared Phys. Technol. 63, 62–68 (2014).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “Highly birefringent ZBLAN photonic quasi-crystal fiber with four circular air holes in the core,” Infrared Phys. Technol. 66, 97–102 (2014).
[Crossref]

Adv. OptoElectron. (1)

S. Rajalingam and Z. C. Alex, “Fivefold symmetric photonic quasi-crystal fiber for dispersion compensation from S- to L-band and optimized at 1.55  μm,” Adv. OptoElectron. 2015, 417401 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Express (2)

J. Liu, E. Liu, Z. Fan, and X. Zhang, “Dielectric refractive index dependence of the focusing properties of a dielectric-cylinder-type decagonal photonic quasicrystal flat lens and its photon localization,” Appl. Phys. Express 8, 112003 (2015).
[Crossref]

B. Feng, E. Liu, Z. Wang, W. Cai, H. Liu, S. Wang, T. Liang, W. Xiao, and J. Liu, “Generation of terahertz hollow beams by a photonic quasi-crystal flat lens,” Appl. Phys. Express 9, 062003 (2016).
[Crossref]

Appl. Phys. Lett. (2)

K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 84, 4875–4877 (2004).
[Crossref]

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).
[Crossref]

Chin. Phys. Lett. (1)

Y. Li, W. Fan, and Q. Sheng, “A novel photonic quasicrystal fiber with broadband large negative dispersion,” Chin. Phys. Lett. 27, 114211 (2010).
[Crossref]

Europhys. Lett. (1)

Y. Wang, Z. Feng, X. Xu, B. Cheng, and D. Zhang, “Uncoupled defect modes in a two-dimensional quasiperiodic photonic crystal,” Europhys. Lett. 64, 185–189 (2003).
[Crossref]

Fiber Integr. Opt. (2)

R. Bhattacharya and S. Konar, “Design of a photonic crystal fiber with zero dispersion wavelength near 0.65  μm,” Fiber Integr. Opt. 27, 89–98 (2008).
[Crossref]

S. Konar, S. K. Ghorai, and R. Bhattacharya, “Highly birefringent microstructure fiber with zero dispersion wavelength at 0.64 micrometer,” Fiber Integr. Opt. 28, 138–145 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Sivabalan and J. P. Raina, “High normal dispersion and large mode area photonic quasi-crystal fiber stretcher,” IEEE Photon. Technol. Lett. 23, 1139–1141 (2011).
[Crossref]

IEEE Sens. J. (1)

M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
[Crossref]

Infrared Phys. Technol. (2)

W. Su, S. Lou, H. Zou, and B. Han, “Design of a highly nonlinear twin bow-tie polymer photonic quasi-crystal fiber with high birefringence,” Infrared Phys. Technol. 63, 62–68 (2014).
[Crossref]

W. Su, S. Lou, H. Zou, and B. Han, “Highly birefringent ZBLAN photonic quasi-crystal fiber with four circular air holes in the core,” Infrared Phys. Technol. 66, 97–102 (2014).
[Crossref]

J. Infrared Millimeter Waves (1)

Y. Zhao, Z. Wang, J. Jiang, X. Chen, C. Yue, J. Wang, and J. Liu, “Add-drop filter with compound structure of photonic crystal and photonic quasicrystal,” J. Infrared Millimeter Waves 36, 342–348 (2017).

J. Lightwave Technol. (2)

J. Mod. Opt. (2)

T. Zhao, S. Lou, W. Su, and X. Wang, “Design of an As2Se3-based photonic quasi-crystal fiber with highly nonlinear and dual zero-dispersion wavelengths,” J. Mod. Opt. 63, 139–145 (2016).
[Crossref]

J. Liu, E. Liu, and Z. Fan, “Width dependence of two-dimensional photonic quasicrystal flat lens imaging characteristics,” J. Mod. Opt. 63, 692–696 (2016).
[Crossref]

J. Opt. Soc. Am. A (2)

Nature (2)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[Crossref]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).
[Crossref]

Opt. Eng. (1)

H. Liu, W. Xiao, W. Cai, E. Liu, B. Feng, Z. Wang, T. Liang, S. Wang, and J. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55, 036101 (2016).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

W. Su, S. Lou, H. Zou, and B. Han, “A highly nonlinear photonic quasi-crystal fiber with low confinement loss and flattened dispersion,” Opt. Fiber Technol. 20, 473–477 (2014).
[Crossref]

Opt. Lett. (1)

Optik (1)

W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, T. Liang, S. Wang, J. Liu, and J. Liu, “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik 127, 4438–4442 (2016).
[Crossref]

Photon. Nanostruct. (1)

P. S. Maji and P. R. Chaudhuri, “Studies of the modal properties of circularly photonic crystal fiber (C-PCF) for high power applications,” Photon. Nanostruct. 19, 12–23 (2016).
[Crossref]

Phys. Rev. B (1)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[Crossref]

Phys. Rev. Lett. (3)

D. Shechtman, I. Blech, and D. Gratias, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
[Crossref]

Y. Chan, C. Chan, and Z. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[Crossref]

Z. Feng, X. Zhang, Y. Wang, Z. Li, B. Cheng, and D. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94, 247402 (2005).
[Crossref]

Solid State Commun. (1)

J. Liu, E. Liu, T. Zhang, and Z. Fan, “Thickness dependence of two-dimensional photonic quasicrystal lens imaging characteristics,” Solid State Commun. 201, 68–71 (2015).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

R. T. Bise and D. J. Trevor, “Solgel-derived microstructured fibers: fabrication and characterization,” in OFC/NFOEC Technical Digest. Optical Fiber Communication Conference (2005), Vol. 3, pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Cross sections of (a) an octagonal Penrose-type PQF with dual-cladding and (b) the inner cladding of the PQF with the maximum air holes.
Fig. 2.
Fig. 2. Variations of (a) dispersion and (b) CL of the PQF with different η 1 at η 2 = 0.57 and Λ = 2.32    μm .
Fig. 3.
Fig. 3. Dependences of dispersion and CL on the filling factor η 1 in (a) Penrose-type PQF and (b) Stampfli-type PQF at the 1.55 μm wavelength.
Fig. 4.
Fig. 4. Variations of (a) dispersion and (b) CL of the PQF with different η 2 at η 1 = 0.28 and Λ = 2.32    μm .
Fig. 5.
Fig. 5. Variations of (a) dispersion and (b) CL of the PQF with different Λ at η 1 = 0.28 and η 2 = 0.57 .
Fig. 6.
Fig. 6. Variation of effective mode area for the wavelength range from 1.27 to 1.67 μm with the optimal structure parameters.
Fig. 7.
Fig. 7. Variations of (a) dispersion, (b) CL, and (c) effective mode area with ± 3 % deviation of air holes of the PQF.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D = D w + D m = λ c d 2 n eff d λ 2 λ c d 2 n eff d λ 2 ,
CL = 8.686 · k 0 Im [ n eff ] × 10 3    ( dB / km ) ,
A eff = ( | E | 2 d x d y ) 2 | E | 4 d x d y .

Metrics