V. Pera, D. H. Brooks, and M. Niedre, “Multiplexed fluorescence tomography with spectral and temporal data: demixing with intrinsic regularization,” Biomed. Opt. Express 7, 111–131 (2016).

[Crossref]

C. Cai, L. Zhang, W. Cai, D. Zhang, Y. Lv, and J. Luo, “Nonlinear greedy sparsity-constrained algorithm for direct reconstruction of fluorescence molecular lifetime tomography,” Biomed. Opt. Express 7, 1210–1226 (2016).

[Crossref]

H. Guo, J. Yu, X. He, Y. Hou, F. Dong, and S. Zhang, “Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization,” Biomed. Opt. Express 6, 1648–1664 (2015).

[Crossref]

K. Wang, Q. Wang, Q. Luo, and X. Yang, “Fluorescence molecular tomography in the second near-infrared window,” Opt. Express 23, 12669–12679 (2015).

[Crossref]

X. He, F. Dong, J. Yu, H. Guo, and Y. Hou, “Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation,” J. Opt. Soc. Am. A 32, 1928–1935 (2015).

[Crossref]

Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, and J. Tian, “A novel region reconstruction method for fluorescence molecular tomography,” IEEE Trans. Biomed. Eng. 62, 1818–1826 (2015).

[Crossref]

J. L. Zhang, J. W. Shi, S. M. Zuo, F. Liu, J. Bai, and J. W. Luo, “Fast reconstruction in fluorescence molecular tomography using data compression of intra- and inter-projections,” Chin. Opt. Lett. 13, 52–56 (2015).

H. Guo, Y. Hou, X. He, J. Yu, J. Cheng, and X. Pu, “Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation,” J. Innov. Opt. Health Sci. 7, 1350057 (2014).

[Crossref]

D. Zhu, Y. Zhao, R. Baikejiang, Z. Yuan, and C. Li, “Comparison of regularization methods in fluorescence molecular tomography,” Photonics 1, 95–109 (2014).

[Crossref]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39, 4156–4159 (2014).

[Crossref]

H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Tian, and J. Liang, “Reconstruction algorithms based on L1-norm and L2-norm for two imaging models of fluorescence molecular tomography: a comparative study,” J. Biomed. Opt. 18, 056013 (2013).

[Crossref]

J. Shao, X. He, C. Böhm, Q. Yang, and C. Plant, “Synchronization-inspired partitioning and hierarchical clustering,” IEEE Trans. Knowl. Data Eng. 25, 893–905 (2013).

[Crossref]

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18, 769–771 (2013).

[Crossref]

J. Dutta, S. Ahn, C. Li, S. Cherry, and R. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[Crossref]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).

[Crossref]

J. Feng, C. Qin, K. Jia, S. Zhu, K. Liu, D. Han, X. Yang, Q. Gao, and J. Tian, “Total variation regularization for bioluminescence tomography with the split Bregman method,” Appl. Opt. 51, 4501–4512 (2012).

[Crossref]

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrarl, E. Charbon, J. Ripoll, and M. Rudin, “Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors,” IEEE. Trans. Med. Imaging 30, 1265–1273 (2011).

[Crossref]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[Crossref]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[Crossref]

X. Zhang, C. Badea, and G. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14, 064010 (2009).

[Crossref]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

[Crossref]

A. D. Zacharopoulos, P. Svenmarker, J. Axlesson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, “A matrix-free algorithm for multiple wavelength fluorescence tomography,” Opt. Express 17, 3025–3035 (2009).

[Crossref]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

[Crossref]

J. Dutta, S. Ahn, C. Li, S. Cherry, and R. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[Crossref]

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18, 769–771 (2013).

[Crossref]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).

[Crossref]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[Crossref]

Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, and J. Tian, “A novel region reconstruction method for fluorescence molecular tomography,” IEEE Trans. Biomed. Eng. 62, 1818–1826 (2015).

[Crossref]

X. Zhang, C. Badea, and G. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14, 064010 (2009).

[Crossref]

J. L. Zhang, J. W. Shi, S. M. Zuo, F. Liu, J. Bai, and J. W. Luo, “Fast reconstruction in fluorescence molecular tomography using data compression of intra- and inter-projections,” Chin. Opt. Lett. 13, 52–56 (2015).

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

[Crossref]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[Crossref]

D. Zhu, Y. Zhao, R. Baikejiang, Z. Yuan, and C. Li, “Comparison of regularization methods in fluorescence molecular tomography,” Photonics 1, 95–109 (2014).

[Crossref]

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrarl, E. Charbon, J. Ripoll, and M. Rudin, “Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors,” IEEE. Trans. Med. Imaging 30, 1265–1273 (2011).

[Crossref]

J. Shao, X. He, C. Böhm, Q. Yang, and C. Plant, “Synchronization-inspired partitioning and hierarchical clustering,” IEEE Trans. Knowl. Data Eng. 25, 893–905 (2013).

[Crossref]

C. Böhm, C. Plant, J. Shao, and Q. Yang, “Clustering by synchronization,” in 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2010), pp. 583–592.

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrarl, E. Charbon, J. Ripoll, and M. Rudin, “Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors,” IEEE. Trans. Med. Imaging 30, 1265–1273 (2011).

[Crossref]

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrarl, E. Charbon, J. Ripoll, and M. Rudin, “Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors,” IEEE. Trans. Med. Imaging 30, 1265–1273 (2011).

[Crossref]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[Crossref]

H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Tian, and J. Liang, “Reconstruction algorithms based on L1-norm and L2-norm for two imaging models of fluorescence molecular tomography: a comparative study,” J. Biomed. Opt. 18, 056013 (2013).

[Crossref]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[Crossref]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

[Crossref]

H. Guo, Y. Hou, X. He, J. Yu, J. Cheng, and X. Pu, “Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation,” J. Innov. Opt. Health Sci. 7, 1350057 (2014).

[Crossref]

J. Dutta, S. Ahn, C. Li, S. Cherry, and R. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[Crossref]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).

[Crossref]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).

[Crossref]

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18, 769–771 (2013).

[Crossref]

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrarl, E. Charbon, J. Ripoll, and M. Rudin, “Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors,” IEEE. Trans. Med. Imaging 30, 1265–1273 (2011).

[Crossref]

X. He, F. Dong, J. Yu, H. Guo, and Y. Hou, “Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation,” J. Opt. Soc. Am. A 32, 1928–1935 (2015).

[Crossref]

H. Guo, J. Yu, X. He, Y. Hou, F. Dong, and S. Zhang, “Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization,” Biomed. Opt. Express 6, 1648–1664 (2015).

[Crossref]

Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, and J. Tian, “A novel region reconstruction method for fluorescence molecular tomography,” IEEE Trans. Biomed. Eng. 62, 1818–1826 (2015).

[Crossref]

J. Dutta, S. Ahn, C. Li, S. Cherry, and R. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[Crossref]

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18, 769–771 (2013).

[Crossref]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).

[Crossref]

J. Feng, C. Qin, K. Jia, S. Zhu, K. Liu, D. Han, X. Yang, Q. Gao, and J. Tian, “Total variation regularization for bioluminescence tomography with the split Bregman method,” Appl. Opt. 51, 4501–4512 (2012).

[Crossref]

J. Feng, C. Qin, K. Jia, S. Zhu, K. Liu, D. Han, X. Yang, Q. Gao, and J. Tian, “Total variation regularization for bioluminescence tomography with the split Bregman method,” Appl. Opt. 51, 4501–4512 (2012).

[Crossref]

H. Guo, J. Yu, X. He, Y. Hou, F. Dong, and S. Zhang, “Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization,” Biomed. Opt. Express 6, 1648–1664 (2015).

[Crossref]

X. He, F. Dong, J. Yu, H. Guo, and Y. Hou, “Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation,” J. Opt. Soc. Am. A 32, 1928–1935 (2015).

[Crossref]

H. Guo, Y. Hou, X. He, J. Yu, J. Cheng, and X. Pu, “Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation,” J. Innov. Opt. Health Sci. 7, 1350057 (2014).

[Crossref]

J. Feng, C. Qin, K. Jia, S. Zhu, K. Liu, D. Han, X. Yang, Q. Gao, and J. Tian, “Total variation regularization for bioluminescence tomography with the split Bregman method,” Appl. Opt. 51, 4501–4512 (2012).

[Crossref]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[Crossref]

H. Guo, J. Yu, X. He, Y. Hou, F. Dong, and S. Zhang, “Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization,” Biomed. Opt. Express 6, 1648–1664 (2015).

[Crossref]

X. He, F. Dong, J. Yu, H. Guo, and Y. Hou, “Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation,” J. Opt. Soc. Am. A 32, 1928–1935 (2015).

[Crossref]

H. Guo, Y. Hou, X. He, J. Yu, J. Cheng, and X. Pu, “Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation,” J. Innov. Opt. Health Sci. 7, 1350057 (2014).

[Crossref]

J. Shao, X. He, C. Böhm, Q. Yang, and C. Plant, “Synchronization-inspired partitioning and hierarchical clustering,” IEEE Trans. Knowl. Data Eng. 25, 893–905 (2013).

[Crossref]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[Crossref]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).

[Crossref]

X. He, F. Dong, J. Yu, H. Guo, and Y. Hou, “Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation,” J. Opt. Soc. Am. A 32, 1928–1935 (2015).

[Crossref]

H. Guo, J. Yu, X. He, Y. Hou, F. Dong, and S. Zhang, “Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization,” Biomed. Opt. Express 6, 1648–1664 (2015).

[Crossref]

H. Guo, Y. Hou, X. He, J. Yu, J. Cheng, and X. Pu, “Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation,” J. Innov. Opt. Health Sci. 7, 1350057 (2014).

[Crossref]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[Crossref]

J. Feng, C. Qin, K. Jia, S. Zhu, K. Liu, D. Han, X. Yang, Q. Gao, and J. Tian, “Total variation regularization for bioluminescence tomography with the split Bregman method,” Appl. Opt. 51, 4501–4512 (2012).

[Crossref]

X. Zhang, C. Badea, and G. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14, 064010 (2009).

[Crossref]

J. Kruskal, “On the shortest spanning tree of a graph and the traveling salesman problem,” in Proceedings of the American Mathematical Society (1956), pp. 48–50.

J. Dutta, S. Ahn, C. Li, S. Cherry, and R. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[Crossref]

D. Zhu, Y. Zhao, R. Baikejiang, Z. Yuan, and C. Li, “Comparison of regularization methods in fluorescence molecular tomography,” Photonics 1, 95–109 (2014).

[Crossref]

J. Dutta, S. Ahn, C. Li, S. Cherry, and R. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[Crossref]

H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Tian, and J. Liang, “Reconstruction algorithms based on L1-norm and L2-norm for two imaging models of fluorescence molecular tomography: a comparative study,” J. Biomed. Opt. 18, 056013 (2013).

[Crossref]

H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Tian, and J. Liang, “Reconstruction algorithms based on L1-norm and L2-norm for two imaging models of fluorescence molecular tomography: a comparative study,” J. Biomed. Opt. 18, 056013 (2013).

[Crossref]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[Crossref]

J. L. Zhang, J. W. Shi, S. M. Zuo, F. Liu, J. Bai, and J. W. Luo, “Fast reconstruction in fluorescence molecular tomography using data compression of intra- and inter-projections,” Chin. Opt. Lett. 13, 52–56 (2015).

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[Crossref]

Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, and J. Tian, “A novel region reconstruction method for fluorescence molecular tomography,” IEEE Trans. Biomed. Eng. 62, 1818–1826 (2015).

[Crossref]

J. Feng, C. Qin, K. Jia, S. Zhu, K. Liu, D. Han, X. Yang, Q. Gao, and J. Tian, “Total variation regularization for bioluminescence tomography with the split Bregman method,” Appl. Opt. 51, 4501–4512 (2012).

[Crossref]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[Crossref]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

[Crossref]

J. L. Zhang, J. W. Shi, S. M. Zuo, F. Liu, J. Bai, and J. W. Luo, “Fast reconstruction in fluorescence molecular tomography using data compression of intra- and inter-projections,” Chin. Opt. Lett. 13, 52–56 (2015).

Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, and J. Tian, “A novel region reconstruction method for fluorescence molecular tomography,” IEEE Trans. Biomed. Eng. 62, 1818–1826 (2015).

[Crossref]

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18, 769–771 (2013).

[Crossref]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).

[Crossref]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

[Crossref]

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452, 580–589 (2008).

[Crossref]

J. Shao, X. He, C. Böhm, Q. Yang, and C. Plant, “Synchronization-inspired partitioning and hierarchical clustering,” IEEE Trans. Knowl. Data Eng. 25, 893–905 (2013).

[Crossref]

C. Böhm, C. Plant, J. Shao, and Q. Yang, “Clustering by synchronization,” in 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2010), pp. 583–592.

H. Guo, Y. Hou, X. He, J. Yu, J. Cheng, and X. Pu, “Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation,” J. Innov. Opt. Health Sci. 7, 1350057 (2014).

[Crossref]

J. Feng, C. Qin, K. Jia, S. Zhu, K. Liu, D. Han, X. Yang, Q. Gao, and J. Tian, “Total variation regularization for bioluminescence tomography with the split Bregman method,” Appl. Opt. 51, 4501–4512 (2012).

[Crossref]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[Crossref]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[Crossref]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[Crossref]

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrarl, E. Charbon, J. Ripoll, and M. Rudin, “Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors,” IEEE. Trans. Med. Imaging 30, 1265–1273 (2011).

[Crossref]

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrarl, E. Charbon, J. Ripoll, and M. Rudin, “Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors,” IEEE. Trans. Med. Imaging 30, 1265–1273 (2011).

[Crossref]

J. Shao, X. He, C. Böhm, Q. Yang, and C. Plant, “Synchronization-inspired partitioning and hierarchical clustering,” IEEE Trans. Knowl. Data Eng. 25, 893–905 (2013).

[Crossref]

C. Böhm, C. Plant, J. Shao, and Q. Yang, “Clustering by synchronization,” in 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2010), pp. 583–592.

J. L. Zhang, J. W. Shi, S. M. Zuo, F. Liu, J. Bai, and J. W. Luo, “Fast reconstruction in fluorescence molecular tomography using data compression of intra- and inter-projections,” Chin. Opt. Lett. 13, 52–56 (2015).

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrarl, E. Charbon, J. Ripoll, and M. Rudin, “Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors,” IEEE. Trans. Med. Imaging 30, 1265–1273 (2011).

[Crossref]

Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, and J. Tian, “A novel region reconstruction method for fluorescence molecular tomography,” IEEE Trans. Biomed. Eng. 62, 1818–1826 (2015).

[Crossref]

H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Tian, and J. Liang, “Reconstruction algorithms based on L1-norm and L2-norm for two imaging models of fluorescence molecular tomography: a comparative study,” J. Biomed. Opt. 18, 056013 (2013).

[Crossref]

J. Feng, C. Qin, K. Jia, S. Zhu, K. Liu, D. Han, X. Yang, Q. Gao, and J. Tian, “Total variation regularization for bioluminescence tomography with the split Bregman method,” Appl. Opt. 51, 4501–4512 (2012).

[Crossref]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[Crossref]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[Crossref]

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrarl, E. Charbon, J. Ripoll, and M. Rudin, “Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors,” IEEE. Trans. Med. Imaging 30, 1265–1273 (2011).

[Crossref]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

[Crossref]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[Crossref]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39, 4156–4159 (2014).

[Crossref]

A. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 13, 9847–9857 (2005).

[Crossref]

H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Tian, and J. Liang, “Reconstruction algorithms based on L1-norm and L2-norm for two imaging models of fluorescence molecular tomography: a comparative study,” J. Biomed. Opt. 18, 056013 (2013).

[Crossref]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[Crossref]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[Crossref]

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452, 580–589 (2008).

[Crossref]

J. Shao, X. He, C. Böhm, Q. Yang, and C. Plant, “Synchronization-inspired partitioning and hierarchical clustering,” IEEE Trans. Knowl. Data Eng. 25, 893–905 (2013).

[Crossref]

C. Böhm, C. Plant, J. Shao, and Q. Yang, “Clustering by synchronization,” in 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2010), pp. 583–592.

K. Wang, Q. Wang, Q. Luo, and X. Yang, “Fluorescence molecular tomography in the second near-infrared window,” Opt. Express 23, 12669–12679 (2015).

[Crossref]

J. Feng, C. Qin, K. Jia, S. Zhu, K. Liu, D. Han, X. Yang, Q. Gao, and J. Tian, “Total variation regularization for bioluminescence tomography with the split Bregman method,” Appl. Opt. 51, 4501–4512 (2012).

[Crossref]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[Crossref]

Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, and J. Tian, “A novel region reconstruction method for fluorescence molecular tomography,” IEEE Trans. Biomed. Eng. 62, 1818–1826 (2015).

[Crossref]

H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Tian, and J. Liang, “Reconstruction algorithms based on L1-norm and L2-norm for two imaging models of fluorescence molecular tomography: a comparative study,” J. Biomed. Opt. 18, 056013 (2013).

[Crossref]

H. Guo, J. Yu, X. He, Y. Hou, F. Dong, and S. Zhang, “Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization,” Biomed. Opt. Express 6, 1648–1664 (2015).

[Crossref]

X. He, F. Dong, J. Yu, H. Guo, and Y. Hou, “Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation,” J. Opt. Soc. Am. A 32, 1928–1935 (2015).

[Crossref]

H. Guo, Y. Hou, X. He, J. Yu, J. Cheng, and X. Pu, “Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation,” J. Innov. Opt. Health Sci. 7, 1350057 (2014).

[Crossref]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[Crossref]

D. Zhu, Y. Zhao, R. Baikejiang, Z. Yuan, and C. Li, “Comparison of regularization methods in fluorescence molecular tomography,” Photonics 1, 95–109 (2014).

[Crossref]

Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, and J. Tian, “A novel region reconstruction method for fluorescence molecular tomography,” IEEE Trans. Biomed. Eng. 62, 1818–1826 (2015).

[Crossref]

J. L. Zhang, J. W. Shi, S. M. Zuo, F. Liu, J. Bai, and J. W. Luo, “Fast reconstruction in fluorescence molecular tomography using data compression of intra- and inter-projections,” Chin. Opt. Lett. 13, 52–56 (2015).

X. Zhang, C. Badea, and G. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14, 064010 (2009).

[Crossref]

D. Zhu, Y. Zhao, R. Baikejiang, Z. Yuan, and C. Li, “Comparison of regularization methods in fluorescence molecular tomography,” Photonics 1, 95–109 (2014).

[Crossref]

D. Zhu, Y. Zhao, R. Baikejiang, Z. Yuan, and C. Li, “Comparison of regularization methods in fluorescence molecular tomography,” Photonics 1, 95–109 (2014).

[Crossref]

H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Tian, and J. Liang, “Reconstruction algorithms based on L1-norm and L2-norm for two imaging models of fluorescence molecular tomography: a comparative study,” J. Biomed. Opt. 18, 056013 (2013).

[Crossref]

J. Feng, C. Qin, K. Jia, S. Zhu, K. Liu, D. Han, X. Yang, Q. Gao, and J. Tian, “Total variation regularization for bioluminescence tomography with the split Bregman method,” Appl. Opt. 51, 4501–4512 (2012).

[Crossref]

J. L. Zhang, J. W. Shi, S. M. Zuo, F. Liu, J. Bai, and J. W. Luo, “Fast reconstruction in fluorescence molecular tomography using data compression of intra- and inter-projections,” Chin. Opt. Lett. 13, 52–56 (2015).

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

[Crossref]

H. Jiang and Y. Tan, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47, 2011–2016 (2008).

[Crossref]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[Crossref]

J. Feng, C. Qin, K. Jia, S. Zhu, K. Liu, D. Han, X. Yang, Q. Gao, and J. Tian, “Total variation regularization for bioluminescence tomography with the split Bregman method,” Appl. Opt. 51, 4501–4512 (2012).

[Crossref]

H. Guo, J. Yu, X. He, Y. Hou, F. Dong, and S. Zhang, “Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization,” Biomed. Opt. Express 6, 1648–1664 (2015).

[Crossref]

V. Pera, D. H. Brooks, and M. Niedre, “Multiplexed fluorescence tomography with spectral and temporal data: demixing with intrinsic regularization,” Biomed. Opt. Express 7, 111–131 (2016).

[Crossref]

C. Cai, L. Zhang, W. Cai, D. Zhang, Y. Lv, and J. Luo, “Nonlinear greedy sparsity-constrained algorithm for direct reconstruction of fluorescence molecular lifetime tomography,” Biomed. Opt. Express 7, 1210–1226 (2016).

[Crossref]

J. L. Zhang, J. W. Shi, S. M. Zuo, F. Liu, J. Bai, and J. W. Luo, “Fast reconstruction in fluorescence molecular tomography using data compression of intra- and inter-projections,” Chin. Opt. Lett. 13, 52–56 (2015).

Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, and J. Tian, “A novel region reconstruction method for fluorescence molecular tomography,” IEEE Trans. Biomed. Eng. 62, 1818–1826 (2015).

[Crossref]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

[Crossref]

J. Shao, X. He, C. Böhm, Q. Yang, and C. Plant, “Synchronization-inspired partitioning and hierarchical clustering,” IEEE Trans. Knowl. Data Eng. 25, 893–905 (2013).

[Crossref]

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrarl, E. Charbon, J. Ripoll, and M. Rudin, “Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors,” IEEE. Trans. Med. Imaging 30, 1265–1273 (2011).

[Crossref]

A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt. 18, 769–771 (2013).

[Crossref]

H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Tian, and J. Liang, “Reconstruction algorithms based on L1-norm and L2-norm for two imaging models of fluorescence molecular tomography: a comparative study,” J. Biomed. Opt. 18, 056013 (2013).

[Crossref]

X. Zhang, C. Badea, and G. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14, 064010 (2009).

[Crossref]

H. Guo, Y. Hou, X. He, J. Yu, J. Cheng, and X. Pu, “Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation,” J. Innov. Opt. Health Sci. 7, 1350057 (2014).

[Crossref]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-x-ray computed tomography,” Nat. Methods 9, 615–620 (2012).

[Crossref]

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452, 580–589 (2008).

[Crossref]

A. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 13, 9847–9857 (2005).

[Crossref]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[Crossref]

K. Wang, Q. Wang, Q. Luo, and X. Yang, “Fluorescence molecular tomography in the second near-infrared window,” Opt. Express 23, 12669–12679 (2015).

[Crossref]

A. D. Zacharopoulos, P. Svenmarker, J. Axlesson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, “A matrix-free algorithm for multiple wavelength fluorescence tomography,” Opt. Express 17, 3025–3035 (2009).

[Crossref]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[Crossref]

D. Zhu, Y. Zhao, R. Baikejiang, Z. Yuan, and C. Li, “Comparison of regularization methods in fluorescence molecular tomography,” Photonics 1, 95–109 (2014).

[Crossref]

J. Dutta, S. Ahn, C. Li, S. Cherry, and R. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[Crossref]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[Crossref]

J. Kruskal, “On the shortest spanning tree of a graph and the traveling salesman problem,” in Proceedings of the American Mathematical Society (1956), pp. 48–50.

C. Böhm, C. Plant, J. Shao, and Q. Yang, “Clustering by synchronization,” in 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2010), pp. 583–592.