Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Evolution properties of the radially polarized multi-Gaussian Schell-model beam in uniaxial crystals

Not Accessible

Your library or personal account may give you access

Abstract

The evolution properties of the normalized intensity distribution, the spectral degree of coherence (SDOC), and the spectral degree of polarization (SDOP) of the radially polarized multi-Gaussian Schell-model (MGSM) beam in uniaxial crystals are illustrated. Numerical results show that the intensity distribution of the radially polarized MGSM beam gradually evolves from a doughnut shape into an elliptical symmetric flattop shape and retains its elliptical flattop shape on further propagation in anisotropic crystals. The evolution behavior of the SDOC and SDOP for the radially polarized MGSM beam is quite different from that of the linearly polarized one. In addition, the influences of the spatial coherence length δ0, beam index M, and the ratio of the extraordinary refractive index to the ordinary refractive index ne/no of the uniaxial crystals on the evolution properties of the normalized intensity distribution, the SDOC, and the SDOP of the radially polarized MGSM beam are discussed in detail.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties

Chengcheng Ping, CHunhao Liang, Fei Wang, and Yangjian Cai
Opt. Express 25(26) 32475-32490 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.