Abstract

Within the validity of the first-order Born approximation and far-field approximation, the possibility for producing scattered fields with various intensity distributions is discussed. It is shown that when light waves are scattered from a collection of particles with random distribution, the intensity distribution of the scattered field can be manipulated by properly controlling the distribution characteristics of particles in the collection. To illustrate this result, three special cases of a particulate medium are discussed to produce scattered spectral density with Gaussian distributions, circular flattened distributions, and ring-like distributions, respectively.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Equivalence theorem for light waves on scattering from particulate media

Hao Wu, Xiaoning Pan, Xiaoling Ji, Daomu Zhao, and Tao Wang
J. Opt. Soc. Am. A 33(10) 2077-2080 (2016)

Equivalence theorem of light waves on scattering from media with different types

Hao Wu, Xiaoning Pan, Zhanghang Zhu, Tao Wang, and Ke Cheng
Opt. Express 25(18) 21410-21418 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Dogariu and E. Wolf, “Spectral changes produced by static scattering on a system of particles,” Opt. Lett. 23, 1340–1342 (1998).
    [Crossref]
  2. T. D. Visser, D. G. Fischer, and E. Wolf, “Scattering of light from quasi-homogeneous sources by quasi-homogeneous media,” J. Opt. Soc. Am. A 23, 1631–1638 (2006).
    [Crossref]
  3. S. Sahin and O. Korotkova, “Scattering of scalar light fields from collections of particles,” Phys. Rev. A 78, 063815 (2008).
    [Crossref]
  4. Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
    [Crossref]
  5. Y. Xin, Y. Chen, Q. Zhao, M. Zhou, and X. Yuan, “Changes of spectrum of light scattering on quasi-homogeneous random media,” Proc. SPIE 6786, 67864S (2007).
    [Crossref]
  6. S. Sahin and O. Korotkova, “Effect of the pair-structure factor of a particulate medium on scalar wave scattering in the first Born approximation,” Opt. Lett. 34, 1762–1764 (2009).
    [Crossref]
  7. X. Du and D. Zhao, “Scattering of light by a system of anisotropic particles,” Opt. Lett. 35, 1518–1520 (2010).
    [Crossref]
  8. S. Sahin, G. Gbur, and O. Korotkova, “Scattering of light from particles with semisoft boundaries,” Opt. Lett. 36, 3957–3959 (2011).
    [Crossref]
  9. X. Du and D. Zhao, “Spectral shifts produced by scattering from rotational quasi-homogeneous anisotropic media,” Opt. Lett. 36, 4749–4751 (2011).
    [Crossref]
  10. Z. Mei and O. Korotkova, “Random light scattering by collections of ellipsoids,” Opt. Express 20, 29296–29307 (2012).
    [Crossref]
  11. C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376, 2697–2702 (2012).
    [Crossref]
  12. J. Li and L. Chang, “Spectral shifts and spectral switches of light generated by scattering of arbitrary coherent waves from a quasi-homogeneous media,” Opt. Express 23, 16602–16616 (2015).
    [Crossref]
  13. J. Zhou and D. Zhao, “Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary,” Phys. Lett. A 380, 2999–3006 (2016).
    [Crossref]
  14. T. Wang, H. Wu, Y. Ding, X. Ji, and D. Zhao, “Changes in the spectral degree of coherence of a light wave on scattering from a particulate medium,” Opt. Commun. 381, 210–213 (2016).
    [Crossref]
  15. D. Zhao and T. Wang, “Direct and inverse problems in the theory of light scattering,” Prog. Opt. 57, 261–308 (2012).
    [Crossref]
  16. D. G. Fischer and E. Wolf, “Inverse problems with quasi-homogeneous random media,” J. Opt. Soc. Am. A 11, 1128–1135 (1994).
    [Crossref]
  17. G. Gbur and E. Wolf, “Determination of density correlation functions from scattering of polychromatic light,” Opt. Commun. 168, 39–45 (1999).
    [Crossref]
  18. M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, “Determination of correlation functions of scattering potentials of stochastic media from scattering experiments,” Phys. Rev. Lett. 102, 123901 (2009).
    [Crossref]
  19. T. Wang and D. Zhao, “Determination of pair-structure factor of scattering potential of a collection of particles,” Opt. Lett. 35, 318–320 (2010).
    [Crossref]
  20. J. Li, “Determination of correlation function of scattering potential of random medium by Gauss vortex beam,” Opt. Commun. 308, 164–168 (2013).
    [Crossref]
  21. F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32, 3531–3533 (2007).
    [Crossref]
  22. Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37, 3240–3242 (2012).
    [Crossref]
  23. Z. Mei and O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38, 91–93 (2013).
    [Crossref]
  24. H. Lajunen and T. Saastamoinen, “Non-uniformly correlated partially coherent pulses,” Opt. Express 21, 190–195 (2013).
    [Crossref]
  25. Y. Chen, L. Liu, F. Wang, C. Zhao, and Y. Cai, “Elliptical Laguerre-Gaussian correlated Schell-model beam,” Opt. Express 22, 13975–13987 (2014).
    [Crossref]
  26. S. Sahin and O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37, 2970–2972 (2012).
    [Crossref]
  27. Z. Mei and O. Korotkova, “Cosine-Gaussian Schell-model sources,” Opt. Lett. 38, 2578–2580 (2013).
    [Crossref]
  28. Z. Mei, D. Zhao, O. Korotkova, and Y. Mao, “Gaussian Schell-model arrays,” Opt. Lett. 40, 5662–5665 (2015).
    [Crossref]
  29. F. Wang and O. Korotkova, “Random sources for beams with azimuthal intensity variation,” Opt. Lett. 41, 516–519 (2016).
    [Crossref]
  30. Y. H. Mao and Z. R. Mei, “Random sources generating ring-shaped optical lattice,” Opt. Commun. 381, 222–226 (2016).
    [Crossref]
  31. J. Li, F. Wang, and O. Korotkova, “Random sources for cusped beams,” Opt. Express 24, 17779–17791 (2016).
    [Crossref]
  32. O. Korotkova, “Design of weak scattering media for controllable light scattering,” Opt. Lett. 40, 284–287 (2015).
    [Crossref]
  33. O. Korotkova, “Can a sphere scatter light producing rectangular intensity patterns?” Opt. Lett. 40, 1709–1712 (2015).
    [Crossref]
  34. G. Zheng, D. Ye, X. Peng, M. Song, and Q. Zhao, “Tunable scattering intensity with prescribed weak media,” Opt. Express 24, 24169–24178 (2016).
    [Crossref]
  35. J. Li and O. Korotkova, “Scattering of light from a stationary nonuniformly correlated medium,” Opt. Lett. 41, 2616–2619 (2016).
    [Crossref]
  36. Y. Ding and D. Zhao, “Random medium model for producing optical coherence lattice,” Opt. Express 25, 25222–25233 (2017).
    [Crossref]
  37. J. Li and O. Korotkova, “Random medium model for cusping of plane waves,” Opt. Lett. 42, 3251–3254 (2017).
    [Crossref]
  38. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  39. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  40. Y. Li, H. Lee, and E. Wolf, “Effect of edge rounding and sloping of sidewalls on the readout signal of the information pits,” Opt. Eng. 42, 2707–2720 (2003).
    [Crossref]

2017 (2)

2016 (7)

J. Zhou and D. Zhao, “Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary,” Phys. Lett. A 380, 2999–3006 (2016).
[Crossref]

T. Wang, H. Wu, Y. Ding, X. Ji, and D. Zhao, “Changes in the spectral degree of coherence of a light wave on scattering from a particulate medium,” Opt. Commun. 381, 210–213 (2016).
[Crossref]

F. Wang and O. Korotkova, “Random sources for beams with azimuthal intensity variation,” Opt. Lett. 41, 516–519 (2016).
[Crossref]

Y. H. Mao and Z. R. Mei, “Random sources generating ring-shaped optical lattice,” Opt. Commun. 381, 222–226 (2016).
[Crossref]

J. Li, F. Wang, and O. Korotkova, “Random sources for cusped beams,” Opt. Express 24, 17779–17791 (2016).
[Crossref]

G. Zheng, D. Ye, X. Peng, M. Song, and Q. Zhao, “Tunable scattering intensity with prescribed weak media,” Opt. Express 24, 24169–24178 (2016).
[Crossref]

J. Li and O. Korotkova, “Scattering of light from a stationary nonuniformly correlated medium,” Opt. Lett. 41, 2616–2619 (2016).
[Crossref]

2015 (4)

2014 (1)

2013 (4)

2012 (5)

2011 (2)

2010 (2)

2009 (2)

M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, “Determination of correlation functions of scattering potentials of stochastic media from scattering experiments,” Phys. Rev. Lett. 102, 123901 (2009).
[Crossref]

S. Sahin and O. Korotkova, “Effect of the pair-structure factor of a particulate medium on scalar wave scattering in the first Born approximation,” Opt. Lett. 34, 1762–1764 (2009).
[Crossref]

2008 (1)

S. Sahin and O. Korotkova, “Scattering of scalar light fields from collections of particles,” Phys. Rev. A 78, 063815 (2008).
[Crossref]

2007 (3)

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
[Crossref]

Y. Xin, Y. Chen, Q. Zhao, M. Zhou, and X. Yuan, “Changes of spectrum of light scattering on quasi-homogeneous random media,” Proc. SPIE 6786, 67864S (2007).
[Crossref]

F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32, 3531–3533 (2007).
[Crossref]

2006 (1)

2003 (1)

Y. Li, H. Lee, and E. Wolf, “Effect of edge rounding and sloping of sidewalls on the readout signal of the information pits,” Opt. Eng. 42, 2707–2720 (2003).
[Crossref]

1999 (1)

G. Gbur and E. Wolf, “Determination of density correlation functions from scattering of polychromatic light,” Opt. Commun. 168, 39–45 (1999).
[Crossref]

1998 (1)

1994 (1)

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Cai, Y.

Y. Chen, L. Liu, F. Wang, C. Zhao, and Y. Cai, “Elliptical Laguerre-Gaussian correlated Schell-model beam,” Opt. Express 22, 13975–13987 (2014).
[Crossref]

C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376, 2697–2702 (2012).
[Crossref]

Chang, L.

Chen, Y.

Y. Chen, L. Liu, F. Wang, C. Zhao, and Y. Cai, “Elliptical Laguerre-Gaussian correlated Schell-model beam,” Opt. Express 22, 13975–13987 (2014).
[Crossref]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
[Crossref]

Y. Xin, Y. Chen, Q. Zhao, M. Zhou, and X. Yuan, “Changes of spectrum of light scattering on quasi-homogeneous random media,” Proc. SPIE 6786, 67864S (2007).
[Crossref]

Ding, C.

C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376, 2697–2702 (2012).
[Crossref]

Ding, Y.

Y. Ding and D. Zhao, “Random medium model for producing optical coherence lattice,” Opt. Express 25, 25222–25233 (2017).
[Crossref]

T. Wang, H. Wu, Y. Ding, X. Ji, and D. Zhao, “Changes in the spectral degree of coherence of a light wave on scattering from a particulate medium,” Opt. Commun. 381, 210–213 (2016).
[Crossref]

Dogariu, A.

Du, X.

Fischer, D. G.

Gbur, G.

S. Sahin, G. Gbur, and O. Korotkova, “Scattering of light from particles with semisoft boundaries,” Opt. Lett. 36, 3957–3959 (2011).
[Crossref]

G. Gbur and E. Wolf, “Determination of density correlation functions from scattering of polychromatic light,” Opt. Commun. 168, 39–45 (1999).
[Crossref]

Gori, F.

Ji, X.

T. Wang, H. Wu, Y. Ding, X. Ji, and D. Zhao, “Changes in the spectral degree of coherence of a light wave on scattering from a particulate medium,” Opt. Commun. 381, 210–213 (2016).
[Crossref]

Korotkova, O.

J. Li and O. Korotkova, “Random medium model for cusping of plane waves,” Opt. Lett. 42, 3251–3254 (2017).
[Crossref]

J. Li and O. Korotkova, “Scattering of light from a stationary nonuniformly correlated medium,” Opt. Lett. 41, 2616–2619 (2016).
[Crossref]

J. Li, F. Wang, and O. Korotkova, “Random sources for cusped beams,” Opt. Express 24, 17779–17791 (2016).
[Crossref]

F. Wang and O. Korotkova, “Random sources for beams with azimuthal intensity variation,” Opt. Lett. 41, 516–519 (2016).
[Crossref]

Z. Mei, D. Zhao, O. Korotkova, and Y. Mao, “Gaussian Schell-model arrays,” Opt. Lett. 40, 5662–5665 (2015).
[Crossref]

O. Korotkova, “Design of weak scattering media for controllable light scattering,” Opt. Lett. 40, 284–287 (2015).
[Crossref]

O. Korotkova, “Can a sphere scatter light producing rectangular intensity patterns?” Opt. Lett. 40, 1709–1712 (2015).
[Crossref]

Z. Mei and O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38, 91–93 (2013).
[Crossref]

Z. Mei and O. Korotkova, “Cosine-Gaussian Schell-model sources,” Opt. Lett. 38, 2578–2580 (2013).
[Crossref]

S. Sahin and O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37, 2970–2972 (2012).
[Crossref]

Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37, 3240–3242 (2012).
[Crossref]

Z. Mei and O. Korotkova, “Random light scattering by collections of ellipsoids,” Opt. Express 20, 29296–29307 (2012).
[Crossref]

S. Sahin, G. Gbur, and O. Korotkova, “Scattering of light from particles with semisoft boundaries,” Opt. Lett. 36, 3957–3959 (2011).
[Crossref]

S. Sahin and O. Korotkova, “Effect of the pair-structure factor of a particulate medium on scalar wave scattering in the first Born approximation,” Opt. Lett. 34, 1762–1764 (2009).
[Crossref]

S. Sahin and O. Korotkova, “Scattering of scalar light fields from collections of particles,” Phys. Rev. A 78, 063815 (2008).
[Crossref]

Lahiri, M.

M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, “Determination of correlation functions of scattering potentials of stochastic media from scattering experiments,” Phys. Rev. Lett. 102, 123901 (2009).
[Crossref]

Lajunen, H.

Lee, H.

Y. Li, H. Lee, and E. Wolf, “Effect of edge rounding and sloping of sidewalls on the readout signal of the information pits,” Opt. Eng. 42, 2707–2720 (2003).
[Crossref]

Li, J.

Li, Y.

Y. Li, H. Lee, and E. Wolf, “Effect of edge rounding and sloping of sidewalls on the readout signal of the information pits,” Opt. Eng. 42, 2707–2720 (2003).
[Crossref]

Liu, L.

Mao, Y.

Mao, Y. H.

Y. H. Mao and Z. R. Mei, “Random sources generating ring-shaped optical lattice,” Opt. Commun. 381, 222–226 (2016).
[Crossref]

Mei, Z.

Mei, Z. R.

Y. H. Mao and Z. R. Mei, “Random sources generating ring-shaped optical lattice,” Opt. Commun. 381, 222–226 (2016).
[Crossref]

Pan, L.

C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376, 2697–2702 (2012).
[Crossref]

Peng, X.

Saastamoinen, T.

Sahin, S.

Santarsiero, M.

Shirai, T.

M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, “Determination of correlation functions of scattering potentials of stochastic media from scattering experiments,” Phys. Rev. Lett. 102, 123901 (2009).
[Crossref]

Song, M.

Tong, Z.

Visser, T. D.

Wang, F.

Wang, T.

T. Wang, H. Wu, Y. Ding, X. Ji, and D. Zhao, “Changes in the spectral degree of coherence of a light wave on scattering from a particulate medium,” Opt. Commun. 381, 210–213 (2016).
[Crossref]

D. Zhao and T. Wang, “Direct and inverse problems in the theory of light scattering,” Prog. Opt. 57, 261–308 (2012).
[Crossref]

T. Wang and D. Zhao, “Determination of pair-structure factor of scattering potential of a collection of particles,” Opt. Lett. 35, 318–320 (2010).
[Crossref]

Wolf, E.

M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, “Determination of correlation functions of scattering potentials of stochastic media from scattering experiments,” Phys. Rev. Lett. 102, 123901 (2009).
[Crossref]

T. D. Visser, D. G. Fischer, and E. Wolf, “Scattering of light from quasi-homogeneous sources by quasi-homogeneous media,” J. Opt. Soc. Am. A 23, 1631–1638 (2006).
[Crossref]

Y. Li, H. Lee, and E. Wolf, “Effect of edge rounding and sloping of sidewalls on the readout signal of the information pits,” Opt. Eng. 42, 2707–2720 (2003).
[Crossref]

G. Gbur and E. Wolf, “Determination of density correlation functions from scattering of polychromatic light,” Opt. Commun. 168, 39–45 (1999).
[Crossref]

A. Dogariu and E. Wolf, “Spectral changes produced by static scattering on a system of particles,” Opt. Lett. 23, 1340–1342 (1998).
[Crossref]

D. G. Fischer and E. Wolf, “Inverse problems with quasi-homogeneous random media,” J. Opt. Soc. Am. A 11, 1128–1135 (1994).
[Crossref]

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

Wu, H.

T. Wang, H. Wu, Y. Ding, X. Ji, and D. Zhao, “Changes in the spectral degree of coherence of a light wave on scattering from a particulate medium,” Opt. Commun. 381, 210–213 (2016).
[Crossref]

Xin, Y.

Y. Xin, Y. Chen, Q. Zhao, M. Zhou, and X. Yuan, “Changes of spectrum of light scattering on quasi-homogeneous random media,” Proc. SPIE 6786, 67864S (2007).
[Crossref]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
[Crossref]

Ye, D.

Yuan, X.

Y. Xin, Y. Chen, Q. Zhao, M. Zhou, and X. Yuan, “Changes of spectrum of light scattering on quasi-homogeneous random media,” Proc. SPIE 6786, 67864S (2007).
[Crossref]

Zhang, Y.

C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376, 2697–2702 (2012).
[Crossref]

Zhao, C.

Zhao, D.

Zhao, Q.

G. Zheng, D. Ye, X. Peng, M. Song, and Q. Zhao, “Tunable scattering intensity with prescribed weak media,” Opt. Express 24, 24169–24178 (2016).
[Crossref]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
[Crossref]

Y. Xin, Y. Chen, Q. Zhao, M. Zhou, and X. Yuan, “Changes of spectrum of light scattering on quasi-homogeneous random media,” Proc. SPIE 6786, 67864S (2007).
[Crossref]

Zheng, G.

Zhou, J.

J. Zhou and D. Zhao, “Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary,” Phys. Lett. A 380, 2999–3006 (2016).
[Crossref]

Zhou, M.

Y. Xin, Y. Chen, Q. Zhao, M. Zhou, and X. Yuan, “Changes of spectrum of light scattering on quasi-homogeneous random media,” Proc. SPIE 6786, 67864S (2007).
[Crossref]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Commun. (5)

G. Gbur and E. Wolf, “Determination of density correlation functions from scattering of polychromatic light,” Opt. Commun. 168, 39–45 (1999).
[Crossref]

T. Wang, H. Wu, Y. Ding, X. Ji, and D. Zhao, “Changes in the spectral degree of coherence of a light wave on scattering from a particulate medium,” Opt. Commun. 381, 210–213 (2016).
[Crossref]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
[Crossref]

J. Li, “Determination of correlation function of scattering potential of random medium by Gauss vortex beam,” Opt. Commun. 308, 164–168 (2013).
[Crossref]

Y. H. Mao and Z. R. Mei, “Random sources generating ring-shaped optical lattice,” Opt. Commun. 381, 222–226 (2016).
[Crossref]

Opt. Eng. (1)

Y. Li, H. Lee, and E. Wolf, “Effect of edge rounding and sloping of sidewalls on the readout signal of the information pits,” Opt. Eng. 42, 2707–2720 (2003).
[Crossref]

Opt. Express (7)

Opt. Lett. (17)

S. Sahin and O. Korotkova, “Effect of the pair-structure factor of a particulate medium on scalar wave scattering in the first Born approximation,” Opt. Lett. 34, 1762–1764 (2009).
[Crossref]

X. Du and D. Zhao, “Scattering of light by a system of anisotropic particles,” Opt. Lett. 35, 1518–1520 (2010).
[Crossref]

S. Sahin, G. Gbur, and O. Korotkova, “Scattering of light from particles with semisoft boundaries,” Opt. Lett. 36, 3957–3959 (2011).
[Crossref]

X. Du and D. Zhao, “Spectral shifts produced by scattering from rotational quasi-homogeneous anisotropic media,” Opt. Lett. 36, 4749–4751 (2011).
[Crossref]

S. Sahin and O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37, 2970–2972 (2012).
[Crossref]

Z. Mei and O. Korotkova, “Cosine-Gaussian Schell-model sources,” Opt. Lett. 38, 2578–2580 (2013).
[Crossref]

Z. Mei, D. Zhao, O. Korotkova, and Y. Mao, “Gaussian Schell-model arrays,” Opt. Lett. 40, 5662–5665 (2015).
[Crossref]

F. Wang and O. Korotkova, “Random sources for beams with azimuthal intensity variation,” Opt. Lett. 41, 516–519 (2016).
[Crossref]

F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32, 3531–3533 (2007).
[Crossref]

Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37, 3240–3242 (2012).
[Crossref]

Z. Mei and O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38, 91–93 (2013).
[Crossref]

J. Li and O. Korotkova, “Scattering of light from a stationary nonuniformly correlated medium,” Opt. Lett. 41, 2616–2619 (2016).
[Crossref]

A. Dogariu and E. Wolf, “Spectral changes produced by static scattering on a system of particles,” Opt. Lett. 23, 1340–1342 (1998).
[Crossref]

T. Wang and D. Zhao, “Determination of pair-structure factor of scattering potential of a collection of particles,” Opt. Lett. 35, 318–320 (2010).
[Crossref]

O. Korotkova, “Design of weak scattering media for controllable light scattering,” Opt. Lett. 40, 284–287 (2015).
[Crossref]

O. Korotkova, “Can a sphere scatter light producing rectangular intensity patterns?” Opt. Lett. 40, 1709–1712 (2015).
[Crossref]

J. Li and O. Korotkova, “Random medium model for cusping of plane waves,” Opt. Lett. 42, 3251–3254 (2017).
[Crossref]

Phys. Lett. A (2)

J. Zhou and D. Zhao, “Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary,” Phys. Lett. A 380, 2999–3006 (2016).
[Crossref]

C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376, 2697–2702 (2012).
[Crossref]

Phys. Rev. A (1)

S. Sahin and O. Korotkova, “Scattering of scalar light fields from collections of particles,” Phys. Rev. A 78, 063815 (2008).
[Crossref]

Phys. Rev. Lett. (1)

M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, “Determination of correlation functions of scattering potentials of stochastic media from scattering experiments,” Phys. Rev. Lett. 102, 123901 (2009).
[Crossref]

Proc. SPIE (1)

Y. Xin, Y. Chen, Q. Zhao, M. Zhou, and X. Yuan, “Changes of spectrum of light scattering on quasi-homogeneous random media,” Proc. SPIE 6786, 67864S (2007).
[Crossref]

Prog. Opt. (1)

D. Zhao and T. Wang, “Direct and inverse problems in the theory of light scattering,” Prog. Opt. 57, 261–308 (2012).
[Crossref]

Other (2)

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Illustration of notations.
Fig. 2.
Fig. 2. Distribution of normalized spectral intensity of the far-zone scattered field for different values of δ. Other parameters for calculation are as follows: sy=0, σs=30λ, σ=1λ.
Fig. 3.
Fig. 3. Distribution of normalized spectral intensity of the far-zone scattered field for different values of M and δ. Other parameters for calculation are as follows: sy=0, σs=25λ, σ=1λ, (a) δ=8λ, (b) M=20.
Fig. 4.
Fig. 4. Distribution of normalized spectral intensity of the far-zone scattered field for different values of M. Other parameters for calculation are as follows: sy=0, σs=30λ, σ=1λ, δ1=15λ, δ2=20λ.
Fig. 5.
Fig. 5. Distribution of normalized spectral intensity of the far-zone scattered field for different values of δ1 and δ2. Other parameters for calculation are as follows: sy=0, σs=30λ, σ=1λ, M=10, (a) δ2=29λ, (b) δ1=15λ.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

W(i)(r1,r2,ω)=S(i)(ω)exp[iks0·(r2r1)],
S(s)(rs,ω)=S(i)(ω)r2C˜F[k(ss0),k(ss0),ω],
C˜F(K,K,ω)=DCF(r1,r2,ω)exp[iK·(r2r1)]d3r1d3r2
CF(r1,r2,ω)=F*(r1,ω)F(r2,ω),
F(r,ω)=nf(rrn,ω),
F(r,ω)=f(r,ω)nδ(rrn,ω),
CF(r1,r2,ω)=Cf(r1,r2,ω)Cn(r1,r2,ω),
Cf(r1,r2,ω)=f*(r1,ω)f(r2,ω),
Cn(r1,r2,ω)=mnδ*(r1rm,ω)δ(r2rn,ω)
S(s)(rs,ω)=S(i)(ω)r2|f˜[k(ss0),ω]|2C˜n[k(ss0),k(ss0),ω],
f˜(K,ω)=f(r,ω)exp(iK·r)d3r
C˜n(K,K,ω)=DCn(r1,r2,ω)exp[iK·(r2r1)]d3r1d3r2
Cn(r1,r2,ω)=H0*(r1,v,ω)H0(r2,v,ω)p(v)d3v,
f(r,ω)=Aexp(r2/2σ2),
f˜(K,ω)=A(2π)3/2σ3exp(σ2K2/2).
S(s)(rs,ω)=A2(2π)3σ6S(i)(ω)r2exp(σ2K2)p(v)|Hs(K,v)|2d3v,
Hs(K,v)=DH0(r,v,ω)exp(iK·r)d3r
H0(r,v,ω)=exp(r24σs2)exp(iv·r),
S(s)(rs,ω)=A223(2π)6σ6σs6S(i)(ω)r2exp(σ2K2)p(v)exp[2σs2(K+v)2]d3v.
p(v)=(2π)32δ3exp(δ22v2).
S(s)(rs,ω)=S(i)(ω)r28A2δ3σs6(2π)6σ6(1δ2+4σs2)3/2×exp[k2(2σs2δ2δ2+4σs2+σ2)(ss0)2].
p(v)=(2π)32δ3C0m=1M(Mm)(1)m1exp(mβδ2v22),
C0=m=1M(Mm)(1)m1m3/2
(Mm)=M!(Mm)!m!
β=m=1M1m
S(s)(rs,ω)=S(i)(ω)r28A2δ3(2π)6σ6σs61C0m=1M(Mm)(1)m1×(1mβδ2+4σs2)3/2exp[k2(2mβσs2δ2mβδ2+4σs2+σ2)(ss0)2].
p(v)=(2π)32HC0m=1M(Mm)(1)m1[exp(mδ12v22)exp(mδ22v22)].
S(s)(rs,ω)=S(i)(ω)r2A229π6σ6σs6HC0m=1M(Mm)(1)m1×{(1mδ12+4σs2)32exp[k2(2mδ12σs2mδ12+4σs2+σ2)(ss0)2](1mδ22+4σs2)32exp[k2(mδ22σs22mδ22+8σs2+σ2)(ss0)2]}.