Abstract

There is a need to better understand the peripheral optics of the human eye and their correction. Current eye models have some limitations to accurately predict the wavefront errors for the emmetropic eye over a wide field. The aim here was to develop an anatomically correct optical model of the human eye that closely reproduces the wavefront of an average Caucasian-only emmetropic eye across a wide visual field. Using an optical design program, a schematic eye was constructed based on ocular wavefront measurements of the right eyes of thirty healthy young emmetropic individuals over a wide visual field (from 40° nasal to 40° temporal and up to 20° inferior field). Anatomical parameters, asymmetries, and dispersion properties of the eye’s different optical components were taken into account. A geometry-independent gradient index model was employed to better represent the crystalline lens. The RMS wavefront error, wavefront shapes, dominant Zernike coefficients, nasal-temporal asymmetries, and dispersion properties of the developed schematic eye closely matched the corresponding measured values across the visual field. The developed model can help in the design of wide-field ophthalmic instruments and is useful in the study and simulations of the peripheral optics of the human eye.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations

James Polans, Bart Jaeken, Ryan P. McNabb, Pablo Artal, and Joseph A. Izatt
Optica 2(2) 124-134 (2015)

Normal and diseased personal eye modeling using age-appropriate lens parameters

Ying-Ling Chen, L. Shi, J. W. L. Lewis, and M. Wang
Opt. Express 20(11) 12498-12507 (2012)

A generic eye model by reverse building based on Chinese population

Mei-mei Kong, Zhi-shan Gao, Xin-hua Li, Shu-hua Ding, Xiao-mei Qu, and Mei-qun Yu
Opt. Express 17(16) 13283-13297 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Atchison and L. N. Thibos, “Optical models of the human eye,” Clin. Exp. Optom. 99, 99–106 (2016).
    [Crossref]
  2. G. Smith, “Schematic eyes: history, description and applications,” Clin. Exp. Optom. 78, 176–189 (1995).
    [Crossref]
  3. W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am. 61, 1522–1528 (1971).
    [Crossref]
  4. J. W. Blaker, “Toward an adaptive model of the human eye,” J. Opt. Soc. Am. 70, 220–224 (1980).
    [Crossref]
  5. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157–2174 (2007).
    [Crossref]
  6. A. V. Goncharov, M. Novakowsky, M. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16, 1692–1703 (2008).
    [Crossref]
  7. B. Tan, “Optical modeling of schematic eyes and the ophthalmic applications,” Ph.D. thesis (University of Tennessee, 2009).
  8. D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46, 2236–2250 (2006).
    [Crossref]
  9. H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. 14, 1684–1695 (1997).
    [Crossref]
  10. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. 16, 1881–1891 (1999).
    [Crossref]
  11. A. Kooijman, “Light distribution on the retina of a wide-angle theoretical eye,” J. Opt. Soc. Am. 73, 1544–1550 (1983).
    [Crossref]
  12. M.-M. Kong, Z.-S. Gao, X.-H. Li, S.-H. Ding, X.-M. Qu, and M.-Q. Yu, “A generic eye model by reverse building based on Chinese population,” Opt. Express 17, 13283–13297 (2009).
    [Crossref]
  13. R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. 2, 1273–1281 (1985).
    [Crossref]
  14. R. Navarro, L. Gonzalez, and J. L. Hernandez-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371–381 (2006).
    [Crossref]
  15. R. Navarro, “Adaptive model of the aging emmetropic eye and its changes with accommodation,” J. Vis. 14(13), 21 (2014).
    [Crossref]
  16. Y.-J. Liu, Z.-Q. Wang, L.-P. Song, and G.-G. Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
    [Crossref]
  17. R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48, 1681–1694 (2008).
    [Crossref]
  18. J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izaat, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2, 124–134 (2015).
    [Crossref]
  19. J. A. Sakamoto, H. H. Barrett, and A. V. Goncharov, “Inverse optical design of the human eye using likelihood methods and wavefront sensing,” Opt. Express 16, 304–314 (2008).
    [Crossref]
  20. H. Guo, Z. Wang, Y. Wang, and Q. Zhao, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
    [Crossref]
  21. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15, 2204–2218 (2007).
    [Crossref]
  22. B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123, 1036–1042 (2016).
    [Crossref]
  23. W. L. Wong, X. Su, X. Li, C. M. G. Cheung, R. Klein, C.-Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2, e106–e116 (2014).
    [Crossref]
  24. L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. 26, 2192–2198 (2009).
    [Crossref]
  25. L. Lundström, “Wavefront aberrations and peripheral vision,” Ph.D. thesis (Royal Institute of Technology (KTH), 2007).
  26. L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005).
    [Crossref]
  27. B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Vis. Sci. 53, 3405–3413 (2012).
    [Crossref]
  28. B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
    [Crossref]
  29. K. Baskaran, B. Theagarayan, S. Carius, and J. Gustafsson, “Repeatability of peripheral aberrations in young emmetropes,” Optom. Vis. Sci. 87, 751–759 (2010).
    [Crossref]
  30. K. Baskaran, R. Rosen, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
    [Crossref]
  31. X. Wei and L. Thibos, “Design and validation of a scanning shack Hartmann aberrometer for measurements of the eye over a wide field of view,” Opt. Express 18, 1134–1143 (2010).
    [Crossref]
  32. P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
    [Crossref]
  33. Zemax Development Corporation, “Optical design program user’s guide,” 2016, http://www.zemax.com .
  34. M. Bahrami and A. V. Goncharov, “Geometry-invariant gradient refractive index lens: analytical ray tracing,” J. Biomed. Opt. 17, 055001 (2012).
    [Crossref]
  35. M. Bahrami and A. V. Goncharov, “Geometry-invariant grin lens: iso-dispersive contours,” Opt. Express 3, 1684–1700 (2012).
    [Crossref]
  36. M. Bahrami and A. V. Goncharov, “Geometry-invariant grin lens: finite ray tracing,” Opt. Express 22, 27797–27810 (2014).
    [Crossref]
  37. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Cataract Refractive Surg. 18, S652–S660 (2002).
    [Crossref]
  38. W. N. Charman, A. Mathur, D. H. Scott, A. Hartwig, and D. A. Atchison, “Specifying peripheral aberrations in visual science,” J. Biomed. Opt. 17, 025004 (2012).
    [Crossref]
  39. M. N. Akram and K. Baskaran, “Zemax lens file of mean-measured Zernike coefficients of emmetropic subjects at different eccentricities,” figshare (2018), https://doi.org/10.23642/usn.6580058.v1 .
  40. R. J. Noll, “Zernike circle polynomials and optical aberrations of systems with circular pupils,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [Crossref]
  41. X. Wei and L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16, 20490–20502 (2008).
    [Crossref]
  42. B. Jaeken, L. Lundström, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
    [Crossref]
  43. M. N. Akram, R. C. Baraas, and K. Baskaran, “Wide field emmetropic human eye model with geometry independent gradient index lens,” figshare (2018), https://doi.org/10.23642/usn.6580739.v1 .
  44. J. J. Rozema, D. A. Atchison, and M. J. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Visual Sci. 52, 4525–4533 (2011).
    [Crossref]
  45. K. Baskaran, P. Unsbo, and J. Gustafsson, “Influence of age on peripheral ocular aberrations,” Optom. Vis. Sci. 88, 1088–1098 (2011).
    [Crossref]
  46. R. Rosen, H. A. Weeber, C. Canovas Vidal, M. Van Der Mooren, and D. Sellitri, “Intraocular lens that improves overall vision where there is a local loss of retinal function (publication no. 20180221140),” U.S. patent15/871,861 (January15, 2018).

2016 (2)

D. A. Atchison and L. N. Thibos, “Optical models of the human eye,” Clin. Exp. Optom. 99, 99–106 (2016).
[Crossref]

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123, 1036–1042 (2016).
[Crossref]

2015 (1)

2014 (3)

R. Navarro, “Adaptive model of the aging emmetropic eye and its changes with accommodation,” J. Vis. 14(13), 21 (2014).
[Crossref]

W. L. Wong, X. Su, X. Li, C. M. G. Cheung, R. Klein, C.-Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2, e106–e116 (2014).
[Crossref]

M. Bahrami and A. V. Goncharov, “Geometry-invariant grin lens: finite ray tracing,” Opt. Express 22, 27797–27810 (2014).
[Crossref]

2012 (5)

W. N. Charman, A. Mathur, D. H. Scott, A. Hartwig, and D. A. Atchison, “Specifying peripheral aberrations in visual science,” J. Biomed. Opt. 17, 025004 (2012).
[Crossref]

M. Bahrami and A. V. Goncharov, “Geometry-invariant gradient refractive index lens: analytical ray tracing,” J. Biomed. Opt. 17, 055001 (2012).
[Crossref]

M. Bahrami and A. V. Goncharov, “Geometry-invariant grin lens: iso-dispersive contours,” Opt. Express 3, 1684–1700 (2012).
[Crossref]

B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Vis. Sci. 53, 3405–3413 (2012).
[Crossref]

K. Baskaran, R. Rosen, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

2011 (5)

B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
[Crossref]

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

B. Jaeken, L. Lundström, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
[Crossref]

J. J. Rozema, D. A. Atchison, and M. J. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Visual Sci. 52, 4525–4533 (2011).
[Crossref]

K. Baskaran, P. Unsbo, and J. Gustafsson, “Influence of age on peripheral ocular aberrations,” Optom. Vis. Sci. 88, 1088–1098 (2011).
[Crossref]

2010 (2)

K. Baskaran, B. Theagarayan, S. Carius, and J. Gustafsson, “Repeatability of peripheral aberrations in young emmetropes,” Optom. Vis. Sci. 87, 751–759 (2010).
[Crossref]

X. Wei and L. Thibos, “Design and validation of a scanning shack Hartmann aberrometer for measurements of the eye over a wide field of view,” Opt. Express 18, 1134–1143 (2010).
[Crossref]

2009 (2)

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. 26, 2192–2198 (2009).
[Crossref]

M.-M. Kong, Z.-S. Gao, X.-H. Li, S.-H. Ding, X.-M. Qu, and M.-Q. Yu, “A generic eye model by reverse building based on Chinese population,” Opt. Express 17, 13283–13297 (2009).
[Crossref]

2008 (4)

2007 (2)

2006 (2)

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46, 2236–2250 (2006).
[Crossref]

R. Navarro, L. Gonzalez, and J. L. Hernandez-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371–381 (2006).
[Crossref]

2005 (3)

H. Guo, Z. Wang, Y. Wang, and Q. Zhao, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

Y.-J. Liu, Z.-Q. Wang, L.-P. Song, and G.-G. Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
[Crossref]

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005).
[Crossref]

2002 (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Cataract Refractive Surg. 18, S652–S660 (2002).
[Crossref]

1999 (1)

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. 16, 1881–1891 (1999).
[Crossref]

1997 (1)

H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. 14, 1684–1695 (1997).
[Crossref]

1995 (1)

G. Smith, “Schematic eyes: history, description and applications,” Clin. Exp. Optom. 78, 176–189 (1995).
[Crossref]

1985 (1)

R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. 2, 1273–1281 (1985).
[Crossref]

1983 (1)

1980 (1)

1976 (1)

1971 (1)

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Cataract Refractive Surg. 18, S652–S660 (2002).
[Crossref]

Artal, P.

Atchison, D. A.

D. A. Atchison and L. N. Thibos, “Optical models of the human eye,” Clin. Exp. Optom. 99, 99–106 (2016).
[Crossref]

W. N. Charman, A. Mathur, D. H. Scott, A. Hartwig, and D. A. Atchison, “Specifying peripheral aberrations in visual science,” J. Biomed. Opt. 17, 025004 (2012).
[Crossref]

J. J. Rozema, D. A. Atchison, and M. J. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Visual Sci. 52, 4525–4533 (2011).
[Crossref]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46, 2236–2250 (2006).
[Crossref]

Bahrami, M.

M. Bahrami and A. V. Goncharov, “Geometry-invariant grin lens: finite ray tracing,” Opt. Express 22, 27797–27810 (2014).
[Crossref]

M. Bahrami and A. V. Goncharov, “Geometry-invariant gradient refractive index lens: analytical ray tracing,” J. Biomed. Opt. 17, 055001 (2012).
[Crossref]

M. Bahrami and A. V. Goncharov, “Geometry-invariant grin lens: iso-dispersive contours,” Opt. Express 3, 1684–1700 (2012).
[Crossref]

Bakaraju, R. C.

R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48, 1681–1694 (2008).
[Crossref]

Barrett, H. H.

Baskaran, K.

K. Baskaran, R. Rosen, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

K. Baskaran, P. Unsbo, and J. Gustafsson, “Influence of age on peripheral ocular aberrations,” Optom. Vis. Sci. 88, 1088–1098 (2011).
[Crossref]

K. Baskaran, B. Theagarayan, S. Carius, and J. Gustafsson, “Repeatability of peripheral aberrations in young emmetropes,” Optom. Vis. Sci. 87, 751–759 (2010).
[Crossref]

Bescos, J.

R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. 2, 1273–1281 (1985).
[Crossref]

Blaker, J. W.

Brennan, N. A.

H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. 14, 1684–1695 (1997).
[Crossref]

Canovas Vidal, C.

R. Rosen, H. A. Weeber, C. Canovas Vidal, M. Van Der Mooren, and D. Sellitri, “Intraocular lens that improves overall vision where there is a local loss of retinal function (publication no. 20180221140),” U.S. patent15/871,861 (January15, 2018).

Carius, S.

K. Baskaran, B. Theagarayan, S. Carius, and J. Gustafsson, “Repeatability of peripheral aberrations in young emmetropes,” Optom. Vis. Sci. 87, 751–759 (2010).
[Crossref]

Charman, W. N.

W. N. Charman, A. Mathur, D. H. Scott, A. Hartwig, and D. A. Atchison, “Specifying peripheral aberrations in visual science,” J. Biomed. Opt. 17, 025004 (2012).
[Crossref]

Chen, X.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

Cheng, C.-Y.

W. L. Wong, X. Su, X. Li, C. M. G. Cheung, R. Klein, C.-Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2, e106–e116 (2014).
[Crossref]

Cheung, C. M. G.

W. L. Wong, X. Su, X. Li, C. M. G. Cheung, R. Klein, C.-Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2, e106–e116 (2014).
[Crossref]

Dainty, C.

de la Jara, L.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

Ding, S.-H.

Ehrmann, K.

R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48, 1681–1694 (2008).
[Crossref]

Escudero-Sanz, I.

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. 16, 1881–1891 (1999).
[Crossref]

Frick, K.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

Fricke, T. R.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123, 1036–1042 (2016).
[Crossref]

Gao, Z.-S.

Ge, J.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

Goncharov, A. V.

Gonzalez, L.

R. Navarro, L. Gonzalez, and J. L. Hernandez-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371–381 (2006).
[Crossref]

Guo, H.

H. Guo, Z. Wang, Y. Wang, and Q. Zhao, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

Gustafsson, J.

K. Baskaran, R. Rosen, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

K. Baskaran, P. Unsbo, and J. Gustafsson, “Influence of age on peripheral ocular aberrations,” Optom. Vis. Sci. 88, 1088–1098 (2011).
[Crossref]

K. Baskaran, B. Theagarayan, S. Carius, and J. Gustafsson, “Repeatability of peripheral aberrations in young emmetropes,” Optom. Vis. Sci. 87, 751–759 (2010).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. 26, 2192–2198 (2009).
[Crossref]

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005).
[Crossref]

Hartwig, A.

W. N. Charman, A. Mathur, D. H. Scott, A. Hartwig, and D. A. Atchison, “Specifying peripheral aberrations in visual science,” J. Biomed. Opt. 17, 025004 (2012).
[Crossref]

Hernandez-Matamoros, J. L.

R. Navarro, L. Gonzalez, and J. L. Hernandez-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371–381 (2006).
[Crossref]

Ho, A.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48, 1681–1694 (2008).
[Crossref]

Holden, B.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

Holden, B. A.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123, 1036–1042 (2016).
[Crossref]

Izaat, J. A.

Jaeken, B.

Jong, M.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123, 1036–1042 (2016).
[Crossref]

Klein, R.

W. L. Wong, X. Su, X. Li, C. M. G. Cheung, R. Klein, C.-Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2, e106–e116 (2014).
[Crossref]

Kong, M.-M.

Kooijman, A.

Kwan, J.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

Lewis, P.

K. Baskaran, R. Rosen, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

Li, X.

W. L. Wong, X. Su, X. Li, C. M. G. Cheung, R. Klein, C.-Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2, e106–e116 (2014).
[Crossref]

Li, X.-H.

Liou, H.-L.

H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. 14, 1684–1695 (1997).
[Crossref]

Liu, Y.-J.

Y.-J. Liu, Z.-Q. Wang, L.-P. Song, and G.-G. Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
[Crossref]

Lotmar, W.

Lundström, L.

B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
[Crossref]

B. Jaeken, L. Lundström, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. 26, 2192–2198 (2009).
[Crossref]

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005).
[Crossref]

L. Lundström, “Wavefront aberrations and peripheral vision,” Ph.D. thesis (Royal Institute of Technology (KTH), 2007).

Marcos, S.

Martinez, A.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

Mathur, A.

W. N. Charman, A. Mathur, D. H. Scott, A. Hartwig, and D. A. Atchison, “Specifying peripheral aberrations in visual science,” J. Biomed. Opt. 17, 025004 (2012).
[Crossref]

McNabb, R. P.

Mu, G.-G.

Y.-J. Liu, Z.-Q. Wang, L.-P. Song, and G.-G. Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
[Crossref]

Naduvilath, T.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

Naduvilath, T. J.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123, 1036–1042 (2016).
[Crossref]

Naidoo, K. S.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123, 1036–1042 (2016).
[Crossref]

Navarro, R.

R. Navarro, “Adaptive model of the aging emmetropic eye and its changes with accommodation,” J. Vis. 14(13), 21 (2014).
[Crossref]

R. Navarro, L. Gonzalez, and J. L. Hernandez-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371–381 (2006).
[Crossref]

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. 16, 1881–1891 (1999).
[Crossref]

R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. 2, 1273–1281 (1985).
[Crossref]

Noll, R. J.

Novakowsky, M.

Papas, E.

R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48, 1681–1694 (2008).
[Crossref]

Polans, J.

Qu, X.-M.

Resnikoff, S.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123, 1036–1042 (2016).
[Crossref]

Rosales, P.

Rosen, R.

K. Baskaran, R. Rosen, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

R. Rosen, H. A. Weeber, C. Canovas Vidal, M. Van Der Mooren, and D. Sellitri, “Intraocular lens that improves overall vision where there is a local loss of retinal function (publication no. 20180221140),” U.S. patent15/871,861 (January15, 2018).

Rozema, J. J.

J. J. Rozema, D. A. Atchison, and M. J. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Visual Sci. 52, 4525–4533 (2011).
[Crossref]

Sakamoto, J. A.

Sankaridurg, P.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123, 1036–1042 (2016).
[Crossref]

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

Santamaria, J.

R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. 2, 1273–1281 (1985).
[Crossref]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Cataract Refractive Surg. 18, S652–S660 (2002).
[Crossref]

Scott, D. H.

W. N. Charman, A. Mathur, D. H. Scott, A. Hartwig, and D. A. Atchison, “Specifying peripheral aberrations in visual science,” J. Biomed. Opt. 17, 025004 (2012).
[Crossref]

Sellitri, D.

R. Rosen, H. A. Weeber, C. Canovas Vidal, M. Van Der Mooren, and D. Sellitri, “Intraocular lens that improves overall vision where there is a local loss of retinal function (publication no. 20180221140),” U.S. patent15/871,861 (January15, 2018).

Sheehan, M.

Smith, E.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

Smith, G.

G. Smith, “Schematic eyes: history, description and applications,” Clin. Exp. Optom. 78, 176–189 (1995).
[Crossref]

Song, L.-P.

Y.-J. Liu, Z.-Q. Wang, L.-P. Song, and G.-G. Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
[Crossref]

Su, X.

W. L. Wong, X. Su, X. Li, C. M. G. Cheung, R. Klein, C.-Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2, e106–e116 (2014).
[Crossref]

Tan, B.

B. Tan, “Optical modeling of schematic eyes and the ophthalmic applications,” Ph.D. thesis (University of Tennessee, 2009).

Tassignon, M. J.

J. J. Rozema, D. A. Atchison, and M. J. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Visual Sci. 52, 4525–4533 (2011).
[Crossref]

Theagarayan, B.

K. Baskaran, B. Theagarayan, S. Carius, and J. Gustafsson, “Repeatability of peripheral aberrations in young emmetropes,” Optom. Vis. Sci. 87, 751–759 (2010).
[Crossref]

Thibos, L.

Thibos, L. N.

D. A. Atchison and L. N. Thibos, “Optical models of the human eye,” Clin. Exp. Optom. 99, 99–106 (2016).
[Crossref]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Cataract Refractive Surg. 18, S652–S660 (2002).
[Crossref]

Unsbo, P.

K. Baskaran, R. Rosen, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

K. Baskaran, P. Unsbo, and J. Gustafsson, “Influence of age on peripheral ocular aberrations,” Optom. Vis. Sci. 88, 1088–1098 (2011).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. 26, 2192–2198 (2009).
[Crossref]

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005).
[Crossref]

Van Der Mooren, M.

R. Rosen, H. A. Weeber, C. Canovas Vidal, M. Van Der Mooren, and D. Sellitri, “Intraocular lens that improves overall vision where there is a local loss of retinal function (publication no. 20180221140),” U.S. patent15/871,861 (January15, 2018).

Wang, Y.

H. Guo, Z. Wang, Y. Wang, and Q. Zhao, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

Wang, Z.

H. Guo, Z. Wang, Y. Wang, and Q. Zhao, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

Wang, Z.-Q.

Y.-J. Liu, Z.-Q. Wang, L.-P. Song, and G.-G. Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
[Crossref]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Cataract Refractive Surg. 18, S652–S660 (2002).
[Crossref]

Weeber, H. A.

R. Rosen, H. A. Weeber, C. Canovas Vidal, M. Van Der Mooren, and D. Sellitri, “Intraocular lens that improves overall vision where there is a local loss of retinal function (publication no. 20180221140),” U.S. patent15/871,861 (January15, 2018).

Wei, X.

Wilson, D. A.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123, 1036–1042 (2016).
[Crossref]

Wong, T. Y.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123, 1036–1042 (2016).
[Crossref]

W. L. Wong, X. Su, X. Li, C. M. G. Cheung, R. Klein, C.-Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2, e106–e116 (2014).
[Crossref]

Wong, W. L.

W. L. Wong, X. Su, X. Li, C. M. G. Cheung, R. Klein, C.-Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2, e106–e116 (2014).
[Crossref]

Yu, M.-Q.

Zhao, Q.

H. Guo, Z. Wang, Y. Wang, and Q. Zhao, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

Clin. Exp. Optom. (2)

D. A. Atchison and L. N. Thibos, “Optical models of the human eye,” Clin. Exp. Optom. 99, 99–106 (2016).
[Crossref]

G. Smith, “Schematic eyes: history, description and applications,” Clin. Exp. Optom. 78, 176–189 (1995).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (2)

B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Vis. Sci. 53, 3405–3413 (2012).
[Crossref]

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Vis. Sci. 52, 9362–9367 (2011).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

J. J. Rozema, D. A. Atchison, and M. J. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Visual Sci. 52, 4525–4533 (2011).
[Crossref]

J. Biomed. Opt. (3)

W. N. Charman, A. Mathur, D. H. Scott, A. Hartwig, and D. A. Atchison, “Specifying peripheral aberrations in visual science,” J. Biomed. Opt. 17, 025004 (2012).
[Crossref]

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005).
[Crossref]

M. Bahrami and A. V. Goncharov, “Geometry-invariant gradient refractive index lens: analytical ray tracing,” J. Biomed. Opt. 17, 055001 (2012).
[Crossref]

J. Cataract Refractive Surg. (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Cataract Refractive Surg. 18, S652–S660 (2002).
[Crossref]

J. Opt. Soc. Am. (8)

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. 26, 2192–2198 (2009).
[Crossref]

W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am. 61, 1522–1528 (1971).
[Crossref]

J. W. Blaker, “Toward an adaptive model of the human eye,” J. Opt. Soc. Am. 70, 220–224 (1980).
[Crossref]

H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. 14, 1684–1695 (1997).
[Crossref]

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. 16, 1881–1891 (1999).
[Crossref]

A. Kooijman, “Light distribution on the retina of a wide-angle theoretical eye,” J. Opt. Soc. Am. 73, 1544–1550 (1983).
[Crossref]

R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. 2, 1273–1281 (1985).
[Crossref]

R. J. Noll, “Zernike circle polynomials and optical aberrations of systems with circular pupils,” J. Opt. Soc. Am. 66, 207–211 (1976).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Vis. (1)

R. Navarro, “Adaptive model of the aging emmetropic eye and its changes with accommodation,” J. Vis. 14(13), 21 (2014).
[Crossref]

Lancet Glob. Health (1)

W. L. Wong, X. Su, X. Li, C. M. G. Cheung, R. Klein, C.-Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2, e106–e116 (2014).
[Crossref]

Ophthalmology (1)

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123, 1036–1042 (2016).
[Crossref]

Opt. Express (9)

Optica (1)

Optik (2)

H. Guo, Z. Wang, Y. Wang, and Q. Zhao, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

Y.-J. Liu, Z.-Q. Wang, L.-P. Song, and G.-G. Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
[Crossref]

Optom. Vis. Sci. (4)

R. Navarro, L. Gonzalez, and J. L. Hernandez-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371–381 (2006).
[Crossref]

K. Baskaran, B. Theagarayan, S. Carius, and J. Gustafsson, “Repeatability of peripheral aberrations in young emmetropes,” Optom. Vis. Sci. 87, 751–759 (2010).
[Crossref]

K. Baskaran, R. Rosen, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

K. Baskaran, P. Unsbo, and J. Gustafsson, “Influence of age on peripheral ocular aberrations,” Optom. Vis. Sci. 88, 1088–1098 (2011).
[Crossref]

Vision Res. (2)

R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48, 1681–1694 (2008).
[Crossref]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46, 2236–2250 (2006).
[Crossref]

Other (6)

B. Tan, “Optical modeling of schematic eyes and the ophthalmic applications,” Ph.D. thesis (University of Tennessee, 2009).

L. Lundström, “Wavefront aberrations and peripheral vision,” Ph.D. thesis (Royal Institute of Technology (KTH), 2007).

Zemax Development Corporation, “Optical design program user’s guide,” 2016, http://www.zemax.com .

R. Rosen, H. A. Weeber, C. Canovas Vidal, M. Van Der Mooren, and D. Sellitri, “Intraocular lens that improves overall vision where there is a local loss of retinal function (publication no. 20180221140),” U.S. patent15/871,861 (January15, 2018).

M. N. Akram, R. C. Baraas, and K. Baskaran, “Wide field emmetropic human eye model with geometry independent gradient index lens,” figshare (2018), https://doi.org/10.23642/usn.6580739.v1 .

M. N. Akram and K. Baskaran, “Zemax lens file of mean-measured Zernike coefficients of emmetropic subjects at different eccentricities,” figshare (2018), https://doi.org/10.23642/usn.6580058.v1 .

Supplementary Material (2)

NameDescription
» Code 1       Zemax lens file of mean-measured wavefront of thirty young healthy emmetropic subjects across a wide visual field (right eye).
» Code 2       Zemax file of wide field emmetropic human right eye model with geometry independent gradient index lens.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Spatial refractive index profile n(z,ρ) of the Polans GRIN lens model [18].
Fig. 2.
Fig. 2. Example of the measured wavefront error. The inscribed circle has a diameter of 4 mm. The wavefront data inside this circle is used for calculations in this paper. The outer elliptical pupil shape shows the full extent of the light wave exiting from the eye.
Fig. 3.
Fig. 3. (a) Schematic eye (right eye) and coordinate system. (b) Zemax setup to match the pupil shape, wavefront, and Zernike coefficients between the measurements and the Zemax model at different field angles.
Fig. 4.
Fig. 4. Flow chart for the development of the generic eye model.
Fig. 5.
Fig. 5. Spatial refractive index profile n(z,ρ) of the geometry-independent GRIN lens for our model.
Fig. 6.
Fig. 6. RMS wavefront error versus eccentricity of various eye models as compared to the mean-measured wavefront. The error bars correspond to the standard deviation in the measured data set over the 30 tested participants. λ=555  nm, constant exit pupil diameter=4.0  mm at each field angle. (a) Horizontal eccentricity. (b) Vertical eccentricity.
Fig. 7.
Fig. 7. Plots of dominant Zernike terms versus eccentricity. Blue curves = horizontal field, red curves = inferior field. The error bars correspond to the standard deviation in the measured data set over the 30 tested participants. λ=555  nm, constant exit pupil diameter=4.0  mm at each field angle.
Fig. 8.
Fig. 8. Plots of (a) mean sphere (M) and (b) astigmatism (Cyl) versus eccentricity. Blue curves = horizontal field, red curves = inferior field. The error bars correspond to the standard deviation in the measured data set over the 30 tested participants. λ=555  nm, constant exit pupil diameter = 4.0 mm at each field angle.
Fig. 9.
Fig. 9. Chromatic performance of the schematic eye, constant exit pupil diameter = 4.0 mm at each field angle. (a) Mean sphere versus eccentricity Mred and Mblue; (b) chromatic focal shift (MredMblue) versus eccentricity.
Fig. 10.
Fig. 10. Wavefront error (in units of λ), PSF, and letter “E” image convolution, mean-measured versus model eye. Constant exit pupil diameter=4  mm at each field angle; the scale on the wavefront plot box=4  mm×4  mm; the scale on the PSFbox=12.46  mrad×12.46  mrad unless stated otherwise; the scale on the letter “E” box=46.2857  mrad×46.2857  mrad; and λ=555  nm. It can be seen that the shape of the exit pupil remains circular without any pupil squeezing for the off-axis fields.
Fig. 11.
Fig. 11. Point spread function simulation for various eye models. Constant exit pupil diameter=4  mm at each field angle; scale of the PSF box=12.46  mrad×12.46  mrad, except on 40T and 40N images, where it is 24.92  mrad×24.92  mrad; λ=555  nm.

Tables (3)

Tables Icon

Table 1. Mean Zernike Coefficients versus Eccentricitya

Tables Icon

Table 2. Wide-Field Emmetropic Eye Model Specificationsa

Tables Icon

Table 3. Comparison of Different Eye Modelsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n(ζ)=nc+(nsnc)(ζ2)p,
n(λ)=A+B/λ2+C/λ4+D/λ6,
zc=0.5(kpka)1(2ta+2tp4ra4rp+2taka+2tpkp+(32rarp16rata16ratp16rpta16rptp+8tatp+4ta2ka+4ta2kp+4tp2ka+4tp2kp+16ra2+16rp2+4ta2+4tp216ratakp16rptaka16ratpkp16rptpka+8tatpka+8tatpkp+4ta2kakp+4tp2kakp+8tatpkakp)0.5)