Abstract

We investigate recording and erasure of photorefractive holographic gratings in an undoped Bi12TiO20 crystal in a moderate to high intensity regime of the recording beams at 639.7 nm without and with the action of laser pre-illumination at 532 nm. The detected hologram without pre-illumination indicates the participation of two photorefractive electronic gratings in its recording process, and the diffracted signal by itself exhibits a fivefold enhancement when the total intensity increases from 38.4 to 214.5  mW/cm2. The dependence of the measured total diffraction efficiency on intensity was investigated and showed linear behavior. At least three gratings are present in the regime of pre-illumination and participate in the writing and erasure of holographic mechanisms. Two of them are electronic, and one is hole-based, with a phase difference of Δϕ between them. The theoretical approach used to analyze the total diffraction efficiency based upon the photorefractivity standard model, and considering the presence of the three gratings, showed good agreement with the holographic erasure experimental data and permitted us to compute Δϕ, which exhibited strong and unusual dependence on the total intensity.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photorefractive charge compensation during holographic recording in Bi4Ti3O12

X. Yue, E. Krätzig, and R. A. Rupp
J. Opt. Soc. Am. B 15(9) 2383-2389 (1998)

Determination of the photorefractive parameters of Bi12SiO20 by study of the dynamic behavior of complementary gratings

L. Boutsikaris, S. Mailis, and N. A. Vainos
J. Opt. Soc. Am. B 15(3) 1042-1051 (1998)

Gallium-induced inhibition of the photorefractive properties of sillenite crystals

C. Coya, C. Zaldo, V. V. Volkov, A. V. Egorysheva, K. Polgár, and A. Péter
J. Opt. Soc. Am. B 13(5) 908-915 (1996)

References

  • View by:
  • |
  • |
  • |

  1. Z. Jiang, Z. Wang, C. Sun, Y. Cui, Y. Wan, and R. Zou, “Experimental teaching and training system based on volume holographic storage,” Proc. SPIE 10452, 104521V (2017).
    [Crossref]
  2. A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
    [Crossref]
  3. M. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microwaves, Optoelectron. Electromagn. Appl. 12, 594–601 (2013).
    [Crossref]
  4. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
    [Crossref]
  5. P. Gunter and J. Huinard, Photorefractive Materials and Their Applications 1: Basic Effects (Springer, 2006).
  6. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials Characterization (Wiley, 2007).
  7. A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, “Adaptive holographic interferometers operating through self diffraction of recording beams in photorefractive crystals,” Opt. Eng. 28, 580–585 (1989).
    [Crossref]
  8. G. Nader, A. A. Tagliaferri, and P. A. M. dos Santos, “Experimental evidence of the non-exponential sinusoidal phase grating decay in a BSO-type crystal,” Opt. Laser Technol. 26, 127–129 (1994).
    [Crossref]
  9. M. Esselbach and G. Cedilnik, “Sub-millisecond photorefractive two-wave coupling in Bi12TiO20 at 633  nm,” J. Modern Opt. 47, 587–593 (2000).
    [Crossref]
  10. P. V. dos Santos, J. F. Carvalho, and J. Frejlich, “Photochromism, bleaching and photorefractive recording in undoped Bi12TiO20 crystals in the visible and near infrared wavelength range,” Opt. Mater. 29, 462–467 (2007).
    [Crossref]
  11. S. G. Odoulov, K. V. Shcherbin, and A. N. Shumeljuk, “Photorefractive recording in BTO in the near infrared,” J. Opt. Soc. Am. B 11, 1780–1785 (1994).
    [Crossref]
  12. P. V. dos Santos, J. Frejlich, and J. F. Carvalho, “Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20,” Appl. Phys. B 81, 651–655 (2005).
    [Crossref]
  13. A. A. Kolegov, N. I. Burimov, S. M. Shandarov, V. S. Belikov, V. V. Prokofiev, T. Jaaskelainen, A. L. Tolstik, and P. I. Ropot, “Effect of incoherent illumination on two beam interaction of light waves in bismuth titanate crystal,” Bull. Russ. Acad. Sci. 72, 17–21 (2008).
    [Crossref]
  14. V. Marinova, R. C. Liu, S. H. Lin, M.-S. Chen, Y. H. Lin, and K. Y. Hsu, “Near-infrared properties of Rh-doped Bi12TiO20 crystals for photonic applications,” Opt. Lett. 38, 495–497 (2013).
    [Crossref]
  15. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3396 (1969).
    [Crossref]
  16. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.: I. steady state,” Ferroelectrics 22, 949–960 (1979).
    [Crossref]
  17. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
    [Crossref]
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [Crossref]
  19. D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
    [Crossref]
  20. M. Esselbach, G. Cedilnik, A. Kiessling, and R. Kowarschik, “Dependence of the refractive index grating in photorefractive barium titanate on intensity,” Opt. Mater. 14, 351–354 (2000).
    [Crossref]
  21. G. A. Brost, R. A. Motes, and J. R. Rotge, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879–1885 (1988).
    [Crossref]
  22. P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive effect for Bi12SiO3 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053–1064 (1991).
    [Crossref]
  23. M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, “High photorefractive sensitivity in an n-type 45°-cut BaTiO3 crystal,” Opt. Lett. 17, 103–105 (1992).
    [Crossref]
  24. M. Klein and M. Cronin-Golomb, Handbook of Optics: Photorefractive Materials and Devices (McGraw-Hill, 1994), Chap. 39.

2017 (1)

Z. Jiang, Z. Wang, C. Sun, Y. Cui, Y. Wan, and R. Zou, “Experimental teaching and training system based on volume holographic storage,” Proc. SPIE 10452, 104521V (2017).
[Crossref]

2013 (2)

M. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microwaves, Optoelectron. Electromagn. Appl. 12, 594–601 (2013).
[Crossref]

V. Marinova, R. C. Liu, S. H. Lin, M.-S. Chen, Y. H. Lin, and K. Y. Hsu, “Near-infrared properties of Rh-doped Bi12TiO20 crystals for photonic applications,” Opt. Lett. 38, 495–497 (2013).
[Crossref]

2011 (1)

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[Crossref]

2010 (1)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

2008 (1)

A. A. Kolegov, N. I. Burimov, S. M. Shandarov, V. S. Belikov, V. V. Prokofiev, T. Jaaskelainen, A. L. Tolstik, and P. I. Ropot, “Effect of incoherent illumination on two beam interaction of light waves in bismuth titanate crystal,” Bull. Russ. Acad. Sci. 72, 17–21 (2008).
[Crossref]

2007 (1)

P. V. dos Santos, J. F. Carvalho, and J. Frejlich, “Photochromism, bleaching and photorefractive recording in undoped Bi12TiO20 crystals in the visible and near infrared wavelength range,” Opt. Mater. 29, 462–467 (2007).
[Crossref]

2005 (1)

P. V. dos Santos, J. Frejlich, and J. F. Carvalho, “Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20,” Appl. Phys. B 81, 651–655 (2005).
[Crossref]

2000 (2)

M. Esselbach and G. Cedilnik, “Sub-millisecond photorefractive two-wave coupling in Bi12TiO20 at 633  nm,” J. Modern Opt. 47, 587–593 (2000).
[Crossref]

M. Esselbach, G. Cedilnik, A. Kiessling, and R. Kowarschik, “Dependence of the refractive index grating in photorefractive barium titanate on intensity,” Opt. Mater. 14, 351–354 (2000).
[Crossref]

1994 (2)

G. Nader, A. A. Tagliaferri, and P. A. M. dos Santos, “Experimental evidence of the non-exponential sinusoidal phase grating decay in a BSO-type crystal,” Opt. Laser Technol. 26, 127–129 (1994).
[Crossref]

S. G. Odoulov, K. V. Shcherbin, and A. N. Shumeljuk, “Photorefractive recording in BTO in the near infrared,” J. Opt. Soc. Am. B 11, 1780–1785 (1994).
[Crossref]

1992 (1)

1991 (1)

1989 (2)

A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, “Adaptive holographic interferometers operating through self diffraction of recording beams in photorefractive crystals,” Opt. Eng. 28, 580–585 (1989).
[Crossref]

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
[Crossref]

1988 (1)

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.: I. steady state,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

1974 (1)

D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[Crossref]

1969 (2)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3396 (1969).
[Crossref]

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Belikov, V. S.

A. A. Kolegov, N. I. Burimov, S. M. Shandarov, V. S. Belikov, V. V. Prokofiev, T. Jaaskelainen, A. L. Tolstik, and P. I. Ropot, “Effect of incoherent illumination on two beam interaction of light waves in bismuth titanate crystal,” Bull. Russ. Acad. Sci. 72, 17–21 (2008).
[Crossref]

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Brito, I. V.

M. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microwaves, Optoelectron. Electromagn. Appl. 12, 594–601 (2013).
[Crossref]

Brost, G. A.

Burimov, N. I.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[Crossref]

A. A. Kolegov, N. I. Burimov, S. M. Shandarov, V. S. Belikov, V. V. Prokofiev, T. Jaaskelainen, A. L. Tolstik, and P. I. Ropot, “Effect of incoherent illumination on two beam interaction of light waves in bismuth titanate crystal,” Bull. Russ. Acad. Sci. 72, 17–21 (2008).
[Crossref]

Bykov, V. I.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[Crossref]

Carvalho, J. F.

P. V. dos Santos, J. F. Carvalho, and J. Frejlich, “Photochromism, bleaching and photorefractive recording in undoped Bi12TiO20 crystals in the visible and near infrared wavelength range,” Opt. Mater. 29, 462–467 (2007).
[Crossref]

P. V. dos Santos, J. Frejlich, and J. F. Carvalho, “Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20,” Appl. Phys. B 81, 651–655 (2005).
[Crossref]

Cedilnik, G.

M. Esselbach and G. Cedilnik, “Sub-millisecond photorefractive two-wave coupling in Bi12TiO20 at 633  nm,” J. Modern Opt. 47, 587–593 (2000).
[Crossref]

M. Esselbach, G. Cedilnik, A. Kiessling, and R. Kowarschik, “Dependence of the refractive index grating in photorefractive barium titanate on intensity,” Opt. Mater. 14, 351–354 (2000).
[Crossref]

Chang, J. Y.

Chen, F. S.

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3396 (1969).
[Crossref]

Chen, M.-S.

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Cronin-Golomb, M.

M. Klein and M. Cronin-Golomb, Handbook of Optics: Photorefractive Materials and Devices (McGraw-Hill, 1994), Chap. 39.

Cui, Y.

Z. Jiang, Z. Wang, C. Sun, Y. Cui, Y. Wan, and R. Zou, “Experimental teaching and training system based on volume holographic storage,” Proc. SPIE 10452, 104521V (2017).
[Crossref]

dos Santos, P. A. M.

G. Nader, A. A. Tagliaferri, and P. A. M. dos Santos, “Experimental evidence of the non-exponential sinusoidal phase grating decay in a BSO-type crystal,” Opt. Laser Technol. 26, 127–129 (1994).
[Crossref]

dos Santos, P. V.

P. V. dos Santos, J. F. Carvalho, and J. Frejlich, “Photochromism, bleaching and photorefractive recording in undoped Bi12TiO20 crystals in the visible and near infrared wavelength range,” Opt. Mater. 29, 462–467 (2007).
[Crossref]

P. V. dos Santos, J. Frejlich, and J. F. Carvalho, “Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20,” Appl. Phys. B 81, 651–655 (2005).
[Crossref]

Esselbach, M.

M. Esselbach and G. Cedilnik, “Sub-millisecond photorefractive two-wave coupling in Bi12TiO20 at 633  nm,” J. Modern Opt. 47, 587–593 (2000).
[Crossref]

M. Esselbach, G. Cedilnik, A. Kiessling, and R. Kowarschik, “Dependence of the refractive index grating in photorefractive barium titanate on intensity,” Opt. Mater. 14, 351–354 (2000).
[Crossref]

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Frejlich, J.

P. V. dos Santos, J. F. Carvalho, and J. Frejlich, “Photochromism, bleaching and photorefractive recording in undoped Bi12TiO20 crystals in the visible and near infrared wavelength range,” Opt. Mater. 29, 462–467 (2007).
[Crossref]

P. V. dos Santos, J. Frejlich, and J. F. Carvalho, “Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20,” Appl. Phys. B 81, 651–655 (2005).
[Crossref]

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials Characterization (Wiley, 2007).

Garrett, M. H.

Gesualdi, M. R.

M. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microwaves, Optoelectron. Electromagn. Appl. 12, 594–601 (2013).
[Crossref]

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Gunter, P.

P. Gunter and J. Huinard, Photorefractive Materials and Their Applications 1: Basic Effects (Springer, 2006).

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Hsu, K. Y.

Huinard, J.

P. Gunter and J. Huinard, Photorefractive Materials and Their Applications 1: Basic Effects (Springer, 2006).

Jaaskelainen, T.

A. A. Kolegov, N. I. Burimov, S. M. Shandarov, V. S. Belikov, V. V. Prokofiev, T. Jaaskelainen, A. L. Tolstik, and P. I. Ropot, “Effect of incoherent illumination on two beam interaction of light waves in bismuth titanate crystal,” Bull. Russ. Acad. Sci. 72, 17–21 (2008).
[Crossref]

Jenssen, H. P.

Jiang, Z.

Z. Jiang, Z. Wang, C. Sun, Y. Cui, Y. Wan, and R. Zou, “Experimental teaching and training system based on volume holographic storage,” Proc. SPIE 10452, 104521V (2017).
[Crossref]

Kabanova, L. A.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[Crossref]

Kamshilin, A. A.

A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, “Adaptive holographic interferometers operating through self diffraction of recording beams in photorefractive crystals,” Opt. Eng. 28, 580–585 (1989).
[Crossref]

Kargin, Y. F.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[Crossref]

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Kiessling, A.

M. Esselbach, G. Cedilnik, A. Kiessling, and R. Kowarschik, “Dependence of the refractive index grating in photorefractive barium titanate on intensity,” Opt. Mater. 14, 351–354 (2000).
[Crossref]

Klein, M.

M. Klein and M. Cronin-Golomb, Handbook of Optics: Photorefractive Materials and Devices (McGraw-Hill, 1994), Chap. 39.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Kolegov, A. A.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[Crossref]

A. A. Kolegov, N. I. Burimov, S. M. Shandarov, V. S. Belikov, V. V. Prokofiev, T. Jaaskelainen, A. L. Tolstik, and P. I. Ropot, “Effect of incoherent illumination on two beam interaction of light waves in bismuth titanate crystal,” Bull. Russ. Acad. Sci. 72, 17–21 (2008).
[Crossref]

Kowarschik, R.

M. Esselbach, G. Cedilnik, A. Kiessling, and R. Kowarschik, “Dependence of the refractive index grating in photorefractive barium titanate on intensity,” Opt. Mater. 14, 351–354 (2000).
[Crossref]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.: I. steady state,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

Lin, S. H.

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Lin, Y. H.

Liu, R. C.

Mahgerefteh, D.

Marinova, V.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.: I. steady state,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

Mokrushina, E. V.

A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, “Adaptive holographic interferometers operating through self diffraction of recording beams in photorefractive crystals,” Opt. Eng. 28, 580–585 (1989).
[Crossref]

Motes, R. A.

Muramatsu, M.

M. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microwaves, Optoelectron. Electromagn. Appl. 12, 594–601 (2013).
[Crossref]

Nader, G.

G. Nader, A. A. Tagliaferri, and P. A. M. dos Santos, “Experimental evidence of the non-exponential sinusoidal phase grating decay in a BSO-type crystal,” Opt. Laser Technol. 26, 127–129 (1994).
[Crossref]

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Odoulov, S. G.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.: I. steady state,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

Palacios, F. F.

M. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microwaves, Optoelectron. Electromagn. Appl. 12, 594–601 (2013).
[Crossref]

Petrov, M. P.

A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, “Adaptive holographic interferometers operating through self diffraction of recording beams in photorefractive crystals,” Opt. Eng. 28, 580–585 (1989).
[Crossref]

Peyghambarian, N.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Phillips, W.

D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[Crossref]

Prokofiev, V. V.

A. A. Kolegov, N. I. Burimov, S. M. Shandarov, V. S. Belikov, V. V. Prokofiev, T. Jaaskelainen, A. L. Tolstik, and P. I. Ropot, “Effect of incoherent illumination on two beam interaction of light waves in bismuth titanate crystal,” Bull. Russ. Acad. Sci. 72, 17–21 (2008).
[Crossref]

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Ricardo, J.

M. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microwaves, Optoelectron. Electromagn. Appl. 12, 594–601 (2013).
[Crossref]

Ropot, P. I.

A. A. Kolegov, N. I. Burimov, S. M. Shandarov, V. S. Belikov, V. V. Prokofiev, T. Jaaskelainen, A. L. Tolstik, and P. I. Ropot, “Effect of incoherent illumination on two beam interaction of light waves in bismuth titanate crystal,” Bull. Russ. Acad. Sci. 72, 17–21 (2008).
[Crossref]

Rotge, J. R.

Shandarov, S. M.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[Crossref]

A. A. Kolegov, N. I. Burimov, S. M. Shandarov, V. S. Belikov, V. V. Prokofiev, T. Jaaskelainen, A. L. Tolstik, and P. I. Ropot, “Effect of incoherent illumination on two beam interaction of light waves in bismuth titanate crystal,” Bull. Russ. Acad. Sci. 72, 17–21 (2008).
[Crossref]

Shcherbin, K. V.

Shmakov, S. S.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[Crossref]

Shumeljuk, A. N.

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Simonova, G. V.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[Crossref]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.: I. steady state,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

Staebler, D. L.

D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[Crossref]

Sun, C.

Z. Jiang, Z. Wang, C. Sun, Y. Cui, Y. Wan, and R. Zou, “Experimental teaching and training system based on volume holographic storage,” Proc. SPIE 10452, 104521V (2017).
[Crossref]

Tagliaferri, A. A.

G. Nader, A. A. Tagliaferri, and P. A. M. dos Santos, “Experimental evidence of the non-exponential sinusoidal phase grating decay in a BSO-type crystal,” Opt. Laser Technol. 26, 127–129 (1994).
[Crossref]

Tayebati, P.

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Tolstik, A. L.

A. A. Kolegov, N. I. Burimov, S. M. Shandarov, V. S. Belikov, V. V. Prokofiev, T. Jaaskelainen, A. L. Tolstik, and P. I. Ropot, “Effect of incoherent illumination on two beam interaction of light waves in bismuth titanate crystal,” Bull. Russ. Acad. Sci. 72, 17–21 (2008).
[Crossref]

Valin, J.

M. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microwaves, Optoelectron. Electromagn. Appl. 12, 594–601 (2013).
[Crossref]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.: I. steady state,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Wan, Y.

Z. Jiang, Z. Wang, C. Sun, Y. Cui, Y. Wan, and R. Zou, “Experimental teaching and training system based on volume holographic storage,” Proc. SPIE 10452, 104521V (2017).
[Crossref]

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Wang, Z.

Z. Jiang, Z. Wang, C. Sun, Y. Cui, Y. Wan, and R. Zou, “Experimental teaching and training system based on volume holographic storage,” Proc. SPIE 10452, 104521V (2017).
[Crossref]

Warde, C.

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Yeh, P.

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
[Crossref]

Zou, R.

Z. Jiang, Z. Wang, C. Sun, Y. Cui, Y. Wan, and R. Zou, “Experimental teaching and training system based on volume holographic storage,” Proc. SPIE 10452, 104521V (2017).
[Crossref]

Appl. Phys. B (1)

P. V. dos Santos, J. Frejlich, and J. F. Carvalho, “Direct near infrared photorefractive recording and pre-exposure controlled hole-electron competition with enhanced recording in undoped Bi12TiO20,” Appl. Phys. B 81, 651–655 (2005).
[Crossref]

Appl. Phys. Lett. (1)

D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Bull. Russ. Acad. Sci. (1)

A. A. Kolegov, N. I. Burimov, S. M. Shandarov, V. S. Belikov, V. V. Prokofiev, T. Jaaskelainen, A. L. Tolstik, and P. I. Ropot, “Effect of incoherent illumination on two beam interaction of light waves in bismuth titanate crystal,” Bull. Russ. Acad. Sci. 72, 17–21 (2008).
[Crossref]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.: I. steady state,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
[Crossref]

J. Appl. Phys. (1)

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3396 (1969).
[Crossref]

J. Microwaves, Optoelectron. Electromagn. Appl. (1)

M. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microwaves, Optoelectron. Electromagn. Appl. 12, 594–601 (2013).
[Crossref]

J. Modern Opt. (1)

M. Esselbach and G. Cedilnik, “Sub-millisecond photorefractive two-wave coupling in Bi12TiO20 at 633  nm,” J. Modern Opt. 47, 587–593 (2000).
[Crossref]

J. Opt. Soc. Am. B (3)

Nature (1)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Opt. Eng. (1)

A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, “Adaptive holographic interferometers operating through self diffraction of recording beams in photorefractive crystals,” Opt. Eng. 28, 580–585 (1989).
[Crossref]

Opt. Laser Technol. (1)

G. Nader, A. A. Tagliaferri, and P. A. M. dos Santos, “Experimental evidence of the non-exponential sinusoidal phase grating decay in a BSO-type crystal,” Opt. Laser Technol. 26, 127–129 (1994).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (2)

M. Esselbach, G. Cedilnik, A. Kiessling, and R. Kowarschik, “Dependence of the refractive index grating in photorefractive barium titanate on intensity,” Opt. Mater. 14, 351–354 (2000).
[Crossref]

P. V. dos Santos, J. F. Carvalho, and J. Frejlich, “Photochromism, bleaching and photorefractive recording in undoped Bi12TiO20 crystals in the visible and near infrared wavelength range,” Opt. Mater. 29, 462–467 (2007).
[Crossref]

Proc. SPIE (1)

Z. Jiang, Z. Wang, C. Sun, Y. Cui, Y. Wan, and R. Zou, “Experimental teaching and training system based on volume holographic storage,” Proc. SPIE 10452, 104521V (2017).
[Crossref]

Quantum Electron. (1)

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[Crossref]

Other (3)

P. Gunter and J. Huinard, Photorefractive Materials and Their Applications 1: Basic Effects (Springer, 2006).

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials Characterization (Wiley, 2007).

M. Klein and M. Cronin-Golomb, Handbook of Optics: Photorefractive Materials and Devices (McGraw-Hill, 1994), Chap. 39.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Experimental setup: SF, spatial filter; F, neutral density filter; BS, beam splitter; M, mirror; SD, shutter device; D1 is a detector.
Fig. 2.
Fig. 2. Time evolution of the diffracted pump beam behind the BTO sample for 104.5  mW/cm2: experimental data (open circles), double exponential (tick line), single exponential (thin line), and power law (dotted line). Double exponential always show a better fit to the experimental data than to either one single exponential or to a power decay law indicating the presence of at least two different photoactive center levels inside the bandgap of the crystal.
Fig. 3.
Fig. 3. Time evolution of the diffraction efficiency for three different intensities: 38.4  mW/cm2 (tick line), 104.5  mW/cm2 (dotted line), and 214.5  mW/cm2 (thin line). Note that the diffraction efficiency rises with the intensity. The time evolution of the diffraction efficiency exhibits different behaviors for the different intensities, suggesting that the erasure time constants vary with the intensity.
Fig. 4.
Fig. 4. Dependence of the diffraction efficiency as a function of the total intensity exhibiting a fivefold enhancement when the total intensity was increased from 38.4 to 214.5  mW/cm2. The measured dependence showed a linear behavior that has not been reported up to now and cannot be explained by using the classical standard models for photorefractive phenomenon.
Fig. 5.
Fig. 5. (a) Fast electronic grating erasure time showing a power-law-type decay. From the fitting to the experimental data it was possible to obtain the saturation energy Wsat74.52  J/m2. (b) Slow electronic grating erasure time showing an approximately linear decay as a function of the intensity and a more evident dispersion of the experimental data. This fluctuation can be attributed to the intensity-induced depopulation of the charge carriers in the electronic level and prevent the steady state from being achieved.
Fig. 6.
Fig. 6. Diffraction efficiency as a function of the intensity was measured and showed a linear dependence. This result has not found explanations by using the classical standard models for photorefractive phenomenon. The inset shows a logarithmic representation in order to evidence that linear behavior.
Fig. 7.
Fig. 7. Time evolution of the diffracted pump beam behind the BTO sample after 70 s time of pre-exposure with a 532 nm laser and 104.5  mW/cm2. The observed erasure pattern indicates the presence of electron- and hole-based gratings recorded on different states in the bandgap of the material. Experimental data (open circle). Theoretical fitting using Eq. (26) (full circle).
Fig. 8.
Fig. 8. Absorbance measured for the BTO crystal sample. Note the strong absorption in the region blue–green wavelength.
Fig. 9.
Fig. 9. Time evolution of the diffracted pump beam behind the BTO sample for three different intensities: 38.4  mW/cm2 [experimental data (open circle)]; 104.5  mW/cm2 [experimental data (open triangle)]; 214.5  mW/cm2 [experimental data (open square)]. Theoretical fitting using Eq. (26) (full circle).
Fig. 10.
Fig. 10. Diffraction efficiency as a function of the total intensity. An enhancement of 17 times in the total diffraction efficiency is observed when the total intensity increases from 38.4  mW/cm2 to 214.5  mW/cm2. Dotted line is only a guideline for the eyes.
Fig. 11.
Fig. 11. Hole grating diffraction efficiency as a function of the total intensity. An enhancement is observed of the efficiency reaching a maximum of around 110  mW/cm2; from there, it follows, decreasing for higher intensities. Dotted line is a guideline for the eyes.
Fig. 12.
Fig. 12. (a) Fast electronic and (b) hole time constants of the recorded gratings as a function of the total intensity. The order of magnitude of τh is twice as high as τe, evidencing the nature of the different mobilities for electrons and holes into the crystal.
Fig. 13.
Fig. 13. (a) Dependency of Δϕ on the total intensity of the recording beams. A strong and unusual dependence of Δϕ on the intensity is observed. Dotted line is a guideline for the eyes. (b) Simplified diagram illustrating the variation of Δϕ on the total intensity from the dynamic of charge carriers into the BTO crystal under nonuniform illumination during the gratings recording process.

Tables (1)

Tables Icon

Table 1. Values of the Fitting Parameters for Three Theoretical Curves of Erasure Shown in Fig. 2

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

I=I0[1+mcos(Kx+ϕ)],
Δn=n32reffEsc,
Nt=GR+1e.J,
ND+t=GR,
G=(NDND+)(sIhν+β),
R=γND+N,
J=eμNE+eDN,
.(ϵ0εE)=e(ND+NNA),
E=E0+Esc,
Esc(t)=Esc=meffEeff,
Eeff=E0+iED1+K2ls2iKlE,
meff=msI0sI0+βhυ,
ls2=εϵ0kBTe2(ND)eff,
lE=εϵ0E0e(ND)eff,
ED=KkBT|e|,
η=sin2(πdΔnλcosθ).
η=(πdΔnλcosθ)2.
η|Esc|2.
Esc=Aetτsc,
η=η0e2tτsc,
η(t)=|A1etτ1eiϕ1+A2etτ2eiϕ2++ANetτNeiϕN|2,
η(t)=|Afetτf+Asetτs|2,
Esc1m,andEsc2m,
η|Esc1+Esc2|2m2.
τfast=WsatI0,
Δnη1/2.
Δnη1/2I01/2.
η(t)=|(Afetτf+Asetτs)eiΔϕ+Ahetτh|2,