Abstract

Optical diffraction tomography (ODT) is a three-dimensional (3D) quantitative phase imaging technique, which enables the reconstruction of the 3D refractive index (RI) distribution of a transparent sample. Due to its fast, non-invasive, and quantitative imaging capability, ODT has emerged as a powerful tool for various applications. However, the spatial resolution of ODT has only been quantified along the lateral and axial directions for limited conditions; it has not been investigated for arbitrary-oblique directions. In this paper, we systematically quantify the 3D spatial resolution of ODT by exploiting the spatial bandwidth of the reconstructed scattering potential. The 3D spatial resolution is calculated for various types of systems, including the illumination-scanning, sample-rotation, and hybrid scanning-rotation methods. In particular, using the calculated 3D spatial resolution, we provide the spatial resolution as well as the arbitrary sliced angle. Furthermore, to validate the present method, the point spread function of an ODT system is experimentally obtained using the deconvolution of a 3D RI distribution of a microsphere and is compared with the calculated resolution.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations

Jiaji Li, Qian Chen, Jiasong Sun, Jialin Zhang, Junyi Ding, and Chao Zuo
Biomed. Opt. Express 9(6) 2526-2542 (2018)

Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy

Micah H. Jenkins and Thomas K. Gaylord
Appl. Opt. 54(31) 9213-9227 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. R. S. Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).
    [Crossref]
  2. R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
    [Crossref]
  3. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv mikrosk. Anatomie 9, 413–418 (1873).
    [Crossref]
  4. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106, 2995–2999 (2009).
    [Crossref]
  5. R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).
    [Crossref]
  6. H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2013).
    [Crossref]
  7. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U. S. A. 97, 8206–8210 (2000).
    [Crossref]
  8. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
    [Crossref]
  9. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses,” Proc. SPIE 2412, 147–156 (1995).
    [Crossref]
  10. M. R. Arnison and C. J. R. Sheppard, “A 3D vectorial optical transfer function suitable for arbitrary pupil functions,” Opt. Commun. 211, 53–63 (2002).
    [Crossref]
  11. O. Nakamura and S. Kawata, “Three-dimensional transfer-function analysis of the tomographic capability of a confocal fluorescence microscope,” J. Opt. Soc. Am. A 7, 522–526 (1990).
    [Crossref]
  12. S. Kimura and C. Munakata, “Calculation of three-dimensional optical transfer function for a confocal scanning fluorescent microscope,” J. Opt. Soc. Am. A 6, 1015–1019 (1989).
    [Crossref]
  13. C. J. R. Sheppard and M. Gu, “The significance of 3-D transfer functions in confocal scanning microscopy,” J. Microsc. 165, 377–390 (1992).
    [Crossref]
  14. S. Lindek and E. H. K. Stelzer, “Optical transfer functions for confocal theta fluorescence microscopy,” J. Opt. Soc. Am. A 13, 479–482 (1996).
    [Crossref]
  15. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985).
    [Crossref]
  16. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [Crossref]
  17. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).
  18. Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
    [Crossref]
  19. K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
    [Crossref]
  20. J. Kostencka, T. Kozacki, A. Kuś, B. Kemper, and M. Kujawińska, “Holographic tomography with scanning of illumination: space-domain reconstruction for spatially invariant accuracy,” Biomed. Opt. Express 7, 4086–4101 (2016).
    [Crossref]
  21. A. Kuś, “Illumination-related errors in limited-angle optical diffraction tomography,” Appl. Opt. 56, 9247–9256 (2017).
    [Crossref]
  22. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
    [Crossref]
  23. A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
    [Crossref]
  24. S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40, 5407–5410 (2015).
    [Crossref]
  25. K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39, 6935–6938 (2014).
    [Crossref]
  26. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
    [Crossref]
  27. M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180 rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40, 1881–1884 (2015).
    [Crossref]
  28. N. Pavillon, C. S. Seelamantula, J. Kuhn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
    [Crossref]
  29. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
    [Crossref]
  30. D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, “Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging,” bioRxiv:106328 (2017).
  31. J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
    [Crossref]
  32. G. Kim, S. Lee, S. Shin, and Y. Park, “Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography,” Sci. Rep. 8, 1782 (2018).
    [Crossref]
  33. J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7, 9306 (2017).
    [Crossref]
  34. J. Yoon, Y. Jo, M.-H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).
    [Crossref]
  35. T. Tougan, J. R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi, and T. Horii, “Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5,” Sci. Rep. 8, 5052 (2018).
    [Crossref]
  36. S. Kwon, Y. Lee, Y. Jung, J. H. Kim, B. Baek, B. Lim, J. Lee, I. Kim, and J. Lee, “Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity,” Eur. J. Med. Chem. 148, 116–127 (2018).
    [Crossref]
  37. B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
    [Crossref]
  38. M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34, 79–81 (2009).
    [Crossref]
  39. J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).
    [Crossref]
  40. M. Lee, S. Shin, and Y. Park, “Reconstructions of refractive index tomograms via a discrete algebraic reconstruction technique,” Opt. Express 25, 27415–27430 (2017).
    [Crossref]
  41. A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
    [Crossref]
  42. L. Yu-Chih and C. Chau-Jern, “Sectional imaging of spatially refractive index distribution using coaxial rotation digital holographic microtomography,” J. Opt. 16, 065401 (2014).
    [Crossref]
  43. S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
    [Crossref]
  44. D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Tomographic phase microscopy: principles and applications in bioimaging [Invited],” J. Opt. Soc. Am. B 34, B64–B77 (2017).
    [Crossref]
  45. S. Mojtaba Shakeri, L. J. van Vliet, and S. Stallinga, “Impact of partial coherence on the apparent optical transfer function derived from the response to amplitude edges,” Appl. Opt. 56, 3518–3530 (2017).
    [Crossref]
  46. J. R. Swedlow, J. W. Sedat, and D. A. Agard, “Deconvolution in optical microscopy,” in Deconvolution of Images and Spectra, A. J. Peter, ed., 2nd ed. (Academic, 1996), pp. 284–309.
  47. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
    [Crossref]
  48. Y. Cotte, M. F. Toy, N. Pavillon, and C. Depeursinge, “Microscopy image resolution improvement by deconvolution of complex fields,” Opt. Express 18, 19462–19478 (2010).
    [Crossref]
  49. A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
    [Crossref]
  50. R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
    [Crossref]
  51. J. M. Soto, J. A. Rodrigo, and T. Alieva, “Label-free quantitative 3D tomographic imaging for partially coherent light microscopy,” Opt. Express 25, 15699–15712 (2017).
    [Crossref]
  52. Y. Sung and R. R. Dasari, “Deterministic regularization of three-dimensional optical diffraction tomography,” J. Opt. Soc. Am. A 28, 1554–1561 (2011).
    [Crossref]
  53. S. Lee, K. Lee, S. Shin, and Y. Park, “Generalized image deconvolution by exploiting the transmission matrix of an optical imaging system,” Sci. Rep. 7, 8961 (2017).
    [Crossref]

2018 (6)

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

G. Kim, S. Lee, S. Shin, and Y. Park, “Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography,” Sci. Rep. 8, 1782 (2018).
[Crossref]

T. Tougan, J. R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi, and T. Horii, “Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5,” Sci. Rep. 8, 5052 (2018).
[Crossref]

S. Kwon, Y. Lee, Y. Jung, J. H. Kim, B. Baek, B. Lim, J. Lee, I. Kim, and J. Lee, “Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity,” Eur. J. Med. Chem. 148, 116–127 (2018).
[Crossref]

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

2017 (9)

J. M. Soto, J. A. Rodrigo, and T. Alieva, “Label-free quantitative 3D tomographic imaging for partially coherent light microscopy,” Opt. Express 25, 15699–15712 (2017).
[Crossref]

S. Lee, K. Lee, S. Shin, and Y. Park, “Generalized image deconvolution by exploiting the transmission matrix of an optical imaging system,” Sci. Rep. 7, 8961 (2017).
[Crossref]

M. Lee, S. Shin, and Y. Park, “Reconstructions of refractive index tomograms via a discrete algebraic reconstruction technique,” Opt. Express 25, 27415–27430 (2017).
[Crossref]

D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Tomographic phase microscopy: principles and applications in bioimaging [Invited],” J. Opt. Soc. Am. B 34, B64–B77 (2017).
[Crossref]

S. Mojtaba Shakeri, L. J. van Vliet, and S. Stallinga, “Impact of partial coherence on the apparent optical transfer function derived from the response to amplitude edges,” Appl. Opt. 56, 3518–3530 (2017).
[Crossref]

B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7, 9306 (2017).
[Crossref]

J. Yoon, Y. Jo, M.-H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).
[Crossref]

A. Kuś, “Illumination-related errors in limited-angle optical diffraction tomography,” Appl. Opt. 56, 9247–9256 (2017).
[Crossref]

2016 (4)

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

J. Kostencka, T. Kozacki, A. Kuś, B. Kemper, and M. Kujawińska, “Holographic tomography with scanning of illumination: space-domain reconstruction for spatially invariant accuracy,” Biomed. Opt. Express 7, 4086–4101 (2016).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
[Crossref]

2015 (4)

2014 (4)

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39, 6935–6938 (2014).
[Crossref]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

L. Yu-Chih and C. Chau-Jern, “Sectional imaging of spatially refractive index distribution using coaxial rotation digital holographic microtomography,” J. Opt. 16, 065401 (2014).
[Crossref]

2013 (2)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2013).
[Crossref]

2011 (2)

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).
[Crossref]

Y. Sung and R. R. Dasari, “Deterministic regularization of three-dimensional optical diffraction tomography,” J. Opt. Soc. Am. A 28, 1554–1561 (2011).
[Crossref]

2010 (1)

2009 (5)

S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106, 2995–2999 (2009).
[Crossref]

N. Pavillon, C. S. Seelamantula, J. Kuhn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[Crossref]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34, 79–81 (2009).
[Crossref]

2006 (1)

2002 (2)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref]

M. R. Arnison and C. J. R. Sheppard, “A 3D vectorial optical transfer function suitable for arbitrary pupil functions,” Opt. Commun. 211, 53–63 (2002).
[Crossref]

2000 (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U. S. A. 97, 8206–8210 (2000).
[Crossref]

1996 (1)

1995 (1)

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses,” Proc. SPIE 2412, 147–156 (1995).
[Crossref]

1992 (1)

C. J. R. Sheppard and M. Gu, “The significance of 3-D transfer functions in confocal scanning microscopy,” J. Microsc. 165, 377–390 (1992).
[Crossref]

1990 (1)

1989 (1)

1985 (1)

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

1879 (1)

F. R. S. Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).
[Crossref]

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv mikrosk. Anatomie 9, 413–418 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv mikrosk. Anatomie 9, 413–418 (1873).
[Crossref]

Agard, D. A.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses,” Proc. SPIE 2412, 147–156 (1995).
[Crossref]

J. R. Swedlow, J. W. Sedat, and D. A. Agard, “Deconvolution in optical microscopy,” in Deconvolution of Images and Spectra, A. J. Peter, ed., 2nd ed. (Academic, 1996), pp. 284–309.

Aguet, F.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2013).
[Crossref]

Alieva, T.

Arnison, M. R.

M. R. Arnison and C. J. R. Sheppard, “A 3D vectorial optical transfer function suitable for arbitrary pupil functions,” Opt. Commun. 211, 53–63 (2002).
[Crossref]

Babacan, S. D.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Badizadegan, K.

Baek, B.

S. Kwon, Y. Lee, Y. Jung, J. H. Kim, B. Baek, B. Lim, J. Lee, I. Kim, and J. Lee, “Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity,” Eur. J. Med. Chem. 148, 116–127 (2018).
[Crossref]

Bailleul, J.

Biteen, J. S.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106, 2995–2999 (2009).
[Crossref]

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Bostan, E.

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

Bouwens, A.

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

Brown, C. M.

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).
[Crossref]

Carney, P. S.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Charrière, F.

Chau-Jern, C.

L. Yu-Chih and C. Chau-Jern, “Sectional imaging of spatially refractive index distribution using coaxial rotation digital holographic microtomography,” J. Opt. 16, 065401 (2014).
[Crossref]

Choi, W.

Choi, Y.

Chung, J.

Cole, R. W.

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).
[Crossref]

Colomb, T.

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Y. Cotte, M. F. Toy, N. Pavillon, and C. Depeursinge, “Microscopy image resolution improvement by deconvolution of complex fields,” Opt. Express 18, 19462–19478 (2010).
[Crossref]

Cuche, E.

Dasari, R. R.

Debailleul, M.

Delaunay, J.-J.

S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
[Crossref]

Depeursinge, C.

Descloux, A.

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

Dong-Jin, K.

J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Dudek, M.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U. S. A. 97, 8206–8210 (2000).
[Crossref]

Ecoffet, C.

Edula, J. R.

T. Tougan, J. R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi, and T. Horii, “Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5,” Sci. Rep. 8, 5052 (2018).
[Crossref]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U. S. A. 97, 8206–8210 (2000).
[Crossref]

Fang-Yen, C.

Feld, M. S.

Geissbuehler, S.

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

Georges, V.

Gilboa, B.

Goddard, L. L.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Grußmayer, K. S.

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

Gu, M.

C. J. R. Sheppard and M. Gu, “The significance of 3-D transfer functions in confocal scanning microscopy,” J. Microsc. 165, 377–390 (1992).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses,” Proc. SPIE 2412, 147–156 (1995).
[Crossref]

Habaza, M.

Haeberlé, O.

Han-Byeol, K.

J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Heintzmann, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Hell, S. W.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U. S. A. 97, 8206–8210 (2000).
[Crossref]

Horii, T.

T. Tougan, J. R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi, and T. Horii, “Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5,” Sci. Rep. 8, 5052 (2018).
[Crossref]

Horstmeyer, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
[Crossref]

Hosseini, P.

Houkal, M.

Hur, J.

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7, 9306 (2017).
[Crossref]

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U. S. A. 97, 8206–8210 (2000).
[Crossref]

Jin, D.

Jin, K. H.

Jinadasa, T.

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).
[Crossref]

Jo, Y.

J. Yoon, Y. Jo, M.-H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).
[Crossref]

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Jung, J.

J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Jung, Y.

S. Kwon, Y. Lee, Y. Jung, J. H. Kim, B. Baek, B. Lim, J. Lee, I. Kim, and J. Lee, “Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity,” Eur. J. Med. Chem. 148, 116–127 (2018).
[Crossref]

Kang, J. W.

Kang, S.-J.

J. Yoon, Y. Jo, M.-H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).
[Crossref]

Kawata, S.

Kemper, B.

J. Kostencka, T. Kozacki, A. Kuś, B. Kemper, and M. Kujawińska, “Holographic tomography with scanning of illumination: space-domain reconstruction for spatially invariant accuracy,” Biomed. Opt. Express 7, 4086–4101 (2016).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Kim, D.

D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, “Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging,” bioRxiv:106328 (2017).

Kim, G.

J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

G. Kim, S. Lee, S. Shin, and Y. Park, “Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography,” Sci. Rep. 8, 1782 (2018).
[Crossref]

Kim, I.

S. Kwon, Y. Lee, Y. Jung, J. H. Kim, B. Baek, B. Lim, J. Lee, I. Kim, and J. Lee, “Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity,” Eur. J. Med. Chem. 148, 116–127 (2018).
[Crossref]

Kim, J. H.

S. Kwon, Y. Lee, Y. Jung, J. H. Kim, B. Baek, B. Lim, J. Lee, I. Kim, and J. Lee, “Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity,” Eur. J. Med. Chem. 148, 116–127 (2018).
[Crossref]

Kim, K.

J. Yoon, Y. Jo, M.-H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).
[Crossref]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7, 9306 (2017).
[Crossref]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40, 5407–5410 (2015).
[Crossref]

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39, 6935–6938 (2014).
[Crossref]

Kim, M.-H.

J. Yoon, Y. Jo, M.-H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).
[Crossref]

Kim, T.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Kimura, S.

Kirshner, H.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2013).
[Crossref]

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U. S. A. 97, 8206–8210 (2000).
[Crossref]

Kostencka, J.

Kozacki, T.

Krauze, W.

A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]

Kuehn, J.

Kuhn, J.

Kujawinska, M.

J. Kostencka, T. Kozacki, A. Kuś, B. Kemper, and M. Kujawińska, “Holographic tomography with scanning of illumination: space-domain reconstruction for spatially invariant accuracy,” Biomed. Opt. Express 7, 4086–4101 (2016).
[Crossref]

A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Kus, A.

A. Kuś, “Illumination-related errors in limited-angle optical diffraction tomography,” Appl. Opt. 56, 9247–9256 (2017).
[Crossref]

J. Kostencka, T. Kozacki, A. Kuś, B. Kemper, and M. Kujawińska, “Holographic tomography with scanning of illumination: space-domain reconstruction for spatially invariant accuracy,” Biomed. Opt. Express 7, 4086–4101 (2016).
[Crossref]

A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Kwon, S.

S. Kwon, Y. Lee, Y. Jung, J. H. Kim, B. Baek, B. Lim, J. Lee, I. Kim, and J. Lee, “Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity,” Eur. J. Med. Chem. 148, 116–127 (2018).
[Crossref]

Lambert, J.

Lashuel, H. A.

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

Lasser, T.

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

Lauer, V.

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref]

Lee, C.-G.

J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Lee, J.

S. Kwon, Y. Lee, Y. Jung, J. H. Kim, B. Baek, B. Lim, J. Lee, I. Kim, and J. Lee, “Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity,” Eur. J. Med. Chem. 148, 116–127 (2018).
[Crossref]

S. Kwon, Y. Lee, Y. Jung, J. H. Kim, B. Baek, B. Lim, J. Lee, I. Kim, and J. Lee, “Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity,” Eur. J. Med. Chem. 148, 116–127 (2018).
[Crossref]

Lee, K.

Lee, M.

J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

M. Lee, S. Shin, and Y. Park, “Reconstructions of refractive index tomograms via a discrete algebraic reconstruction technique,” Opt. Express 25, 27415–27430 (2017).
[Crossref]

D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, “Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging,” bioRxiv:106328 (2017).

Lee, S.

G. Kim, S. Lee, S. Shin, and Y. Park, “Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography,” Sci. Rep. 8, 1782 (2018).
[Crossref]

J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7, 9306 (2017).
[Crossref]

J. Yoon, Y. Jo, M.-H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).
[Crossref]

S. Lee, K. Lee, S. Shin, and Y. Park, “Generalized image deconvolution by exploiting the transmission matrix of an optical imaging system,” Sci. Rep. 7, 8961 (2017).
[Crossref]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).
[Crossref]

D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, “Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging,” bioRxiv:106328 (2017).

Lee, Y.

S. Kwon, Y. Lee, Y. Jung, J. H. Kim, B. Baek, B. Lim, J. Lee, I. Kim, and J. Lee, “Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity,” Eur. J. Med. Chem. 148, 116–127 (2018).
[Crossref]

Leutenegger, M.

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

Lim, B.

S. Kwon, Y. Lee, Y. Jung, J. H. Kim, B. Baek, B. Lim, J. Lee, I. Kim, and J. Lee, “Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity,” Eur. J. Med. Chem. 148, 116–127 (2018).
[Crossref]

Lim, J.

Lindek, S.

Liu, H.

Liu, N.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106, 2995–2999 (2009).
[Crossref]

Lord, S. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106, 2995–2999 (2009).
[Crossref]

Lukes, T.

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Mahul-Mellier, A. L.

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

Marian, A.

Marquet, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

Mir, M.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Moerner, W. E.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106, 2995–2999 (2009).
[Crossref]

Mojtaba Shakeri, S.

Montfort, F.

Morin, R.

Morita, M.

T. Tougan, J. R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi, and T. Horii, “Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5,” Sci. Rep. 8, 5052 (2018).
[Crossref]

Munakata, C.

Nakamura, O.

Oh, J.

D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, “Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging,” bioRxiv:106328 (2017).

Ou, X.

Park, H.

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7, 9306 (2017).
[Crossref]

Park, Y.

G. Kim, S. Lee, S. Shin, and Y. Park, “Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography,” Sci. Rep. 8, 1782 (2018).
[Crossref]

J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7, 9306 (2017).
[Crossref]

J. Yoon, Y. Jo, M.-H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).
[Crossref]

S. Lee, K. Lee, S. Shin, and Y. Park, “Generalized image deconvolution by exploiting the transmission matrix of an optical imaging system,” Sci. Rep. 7, 8961 (2017).
[Crossref]

M. Lee, S. Shin, and Y. Park, “Reconstructions of refractive index tomograms via a discrete algebraic reconstruction technique,” Opt. Express 25, 27415–27430 (2017).
[Crossref]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).
[Crossref]

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40, 5407–5410 (2015).
[Crossref]

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39, 6935–6938 (2014).
[Crossref]

D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, “Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging,” bioRxiv:106328 (2017).

Pavani, S. R. P.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106, 2995–2999 (2009).
[Crossref]

Pavillon, N.

Piestun, R.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106, 2995–2999 (2009).
[Crossref]

Popescu, G.

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).

Rayleigh, F. R. S.

F. R. S. Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).
[Crossref]

Rodrigo, J. A.

Roichman, Y.

Sage, D.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2013).
[Crossref]

Sedat, J. W.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses,” Proc. SPIE 2412, 147–156 (1995).
[Crossref]

J. R. Swedlow, J. W. Sedat, and D. A. Agard, “Deconvolution in optical microscopy,” in Deconvolution of Images and Spectra, A. J. Peter, ed., 2nd ed. (Academic, 1996), pp. 284–309.

Seelamantula, C. S.

Seong-Joo, H.

J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

Shaked, N. T.

Sharipov, A.

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

Sheppard, C. J. R.

M. R. Arnison and C. J. R. Sheppard, “A 3D vectorial optical transfer function suitable for arbitrary pupil functions,” Opt. Commun. 211, 53–63 (2002).
[Crossref]

C. J. R. Sheppard and M. Gu, “The significance of 3-D transfer functions in confocal scanning microscopy,” J. Microsc. 165, 377–390 (1992).
[Crossref]

Shin, S.

G. Kim, S. Lee, S. Shin, and Y. Park, “Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography,” Sci. Rep. 8, 1782 (2018).
[Crossref]

J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

S. Lee, K. Lee, S. Shin, and Y. Park, “Generalized image deconvolution by exploiting the transmission matrix of an optical imaging system,” Sci. Rep. 7, 8961 (2017).
[Crossref]

M. Lee, S. Shin, and Y. Park, “Reconstructions of refractive index tomograms via a discrete algebraic reconstruction technique,” Opt. Express 25, 27415–27430 (2017).
[Crossref]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40, 5407–5410 (2015).
[Crossref]

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).
[Crossref]

Shinohara, A.

T. Tougan, J. R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi, and T. Horii, “Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5,” Sci. Rep. 8, 5052 (2018).
[Crossref]

Shinohara, M.

T. Tougan, J. R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi, and T. Horii, “Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5,” Sci. Rep. 8, 5052 (2018).
[Crossref]

Simon, B.

So, P. T. C.

Soppera, O.

Soto, J. M.

Spangenberg, A.

Stallinga, S.

Stelzer, E. H. K.

Streibl, N.

Sung, Y.

Swedlow, J. R.

J. R. Swedlow, J. W. Sedat, and D. A. Agard, “Deconvolution in optical microscopy,” in Deconvolution of Images and Spectra, A. J. Peter, ed., 2nd ed. (Academic, 1996), pp. 284–309.

Takashima, E.

T. Tougan, J. R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi, and T. Horii, “Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5,” Sci. Rep. 8, 5052 (2018).
[Crossref]

Thompson, M. A.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106, 2995–2999 (2009).
[Crossref]

Tougan, T.

T. Tougan, J. R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi, and T. Horii, “Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5,” Sci. Rep. 8, 5052 (2018).
[Crossref]

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Toy, M. F.

Tsuboi, T.

T. Tougan, J. R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi, and T. Horii, “Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5,” Sci. Rep. 8, 5052 (2018).
[Crossref]

Twieg, R. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106, 2995–2999 (2009).
[Crossref]

Unser, M.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2013).
[Crossref]

N. Pavillon, C. S. Seelamantula, J. Kuhn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[Crossref]

van Vliet, L. J.

Vertu, S.

S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
[Crossref]

Vollmer, A.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Waller, L.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Yamada, I.

S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
[Crossref]

Yang, C.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
[Crossref]

Yang, S.-A.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, “Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging,” bioRxiv:106328 (2017).

Yaqoob, Z.

Ye, J. C.

Yoon, J.

J. Yoon, Y. Jo, M.-H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).
[Crossref]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40, 5407–5410 (2015).
[Crossref]

Yu-Chih, L.

L. Yu-Chih and C. Chau-Jern, “Sectional imaging of spatially refractive index distribution using coaxial rotation digital holographic microtomography,” J. Opt. 16, 065401 (2014).
[Crossref]

Zheng, G.

Zhou, R.

D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Tomographic phase microscopy: principles and applications in bioimaging [Invited],” J. Opt. Soc. Am. B 34, B64–B77 (2017).
[Crossref]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Appl. Opt. (3)

Archiv mikrosk. Anatomie (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv mikrosk. Anatomie 9, 413–418 (1873).
[Crossref]

Biomed. Opt. Express (1)

Eur. J. Med. Chem. (1)

S. Kwon, Y. Lee, Y. Jung, J. H. Kim, B. Baek, B. Lim, J. Lee, I. Kim, and J. Lee, “Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity,” Eur. J. Med. Chem. 148, 116–127 (2018).
[Crossref]

J. Biomed. Opt. (2)

A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

J. Biomed. Photon. Eng. (1)

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

J. Microsc. (3)

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2013).
[Crossref]

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref]

C. J. R. Sheppard and M. Gu, “The significance of 3-D transfer functions in confocal scanning microscopy,” J. Microsc. 165, 377–390 (1992).
[Crossref]

J. Opt. (1)

L. Yu-Chih and C. Chau-Jern, “Sectional imaging of spatially refractive index distribution using coaxial rotation digital holographic microtomography,” J. Opt. 16, 065401 (2014).
[Crossref]

J. Opt. Soc. Am. A (5)

J. Opt. Soc. Am. B (1)

Nat. Photonics (5)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

A. Descloux, K. S. Grußmayer, E. Bostan, T. Lukes, A. Bouwens, A. Sharipov, S. Geissbuehler, A. L. Mahul-Mellier, H. A. Lashuel, M. Leutenegger, and T. Lasser, “Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy,” Nat. Photonics 12, 165–172 (2018).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Nat. Protoc. (1)

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).
[Crossref]

Open Phys. (1)

S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
[Crossref]

Opt. Commun. (2)

M. R. Arnison and C. J. R. Sheppard, “A 3D vectorial optical transfer function suitable for arbitrary pupil functions,” Opt. Commun. 211, 53–63 (2002).
[Crossref]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Optica (2)

Philos. Mag. (1)

F. R. S. Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (2)

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106, 2995–2999 (2009).
[Crossref]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U. S. A. 97, 8206–8210 (2000).
[Crossref]

Proc. SPIE (1)

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses,” Proc. SPIE 2412, 147–156 (1995).
[Crossref]

Sci. Rep. (6)

J. Jung, H. Seong-Joo, K. Han-Byeol, G. Kim, M. Lee, S. Shin, S. Lee, K. Dong-Jin, C.-G. Lee, and Y. Park, “Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography,” Sci. Rep. 8, 6524 (2018).
[Crossref]

G. Kim, S. Lee, S. Shin, and Y. Park, “Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography,” Sci. Rep. 8, 1782 (2018).
[Crossref]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7, 9306 (2017).
[Crossref]

J. Yoon, Y. Jo, M.-H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).
[Crossref]

T. Tougan, J. R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi, and T. Horii, “Molecular camouflage of Plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5,” Sci. Rep. 8, 5052 (2018).
[Crossref]

S. Lee, K. Lee, S. Shin, and Y. Park, “Generalized image deconvolution by exploiting the transmission matrix of an optical imaging system,” Sci. Rep. 7, 8961 (2017).
[Crossref]

Other (3)

J. R. Swedlow, J. W. Sedat, and D. A. Agard, “Deconvolution in optical microscopy,” in Deconvolution of Images and Spectra, A. J. Peter, ed., 2nd ed. (Academic, 1996), pp. 284–309.

D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, “Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging,” bioRxiv:106328 (2017).

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) 3D rendered isosurface of the 3D RI distribution of a hepatocyte. (b), (c) Cross-sectional slices of the 3D RI distribution of the cell in the xz and xy planes. (d) Cross-sectional slice of the 3D RI distribution of the cell in an oblique plane as represented by the x1 and x2 arrows in (a).
Fig. 2.
Fig. 2. Schematic illustration of various ODT methods and corresponding Fourier spectra. (a)–(c) Illumination scanning method. (a) Fields scattered from various illumination angles are recorded. (b) Reconstruction procedure with a single Ewald cap. (c) Fourier spectra of an illumination scanning method. (d)–(f) Sample rotation method. (d) A sample is rotated while the illumination angle is fixed. (e) Reconstruction procedure with a single Ewald cap. (f) Fourier spectra of a sample rotation method. (g)–(i) Hybrid scanning-rotation method. (g) Both the illumination angle and sample orientation are controlled. (h) Fourier spectra synthesized from multiple illumination angles at a specific sample orientation after the reconstruction. (i) Fourier spectra of a hybrid scanning-rotation method.
Fig. 3.
Fig. 3. (a) 3D OTF and (b) effective OTF of an ODT system. To define the spatial resolution along the x1 direction, the spatial bandwidth of the 3D OTF along the ν1 direction is obtained. The polar and azimuthal angles are denoted by θ and ϕ, respectively. (b) The spatial bandwidth in an arbitrary direction ν1 is obtained from the projection of OTF onto ν1. (c) Projection of 3D OTF onto the ν1ν2 plane. (d) Calculated 3D resolution d(θ,ϕ) along all θ and ϕ.
Fig. 4.
Fig. 4. 3D resolutions of ODT as a function of θ and ϕ, obtained for various beam illuminations and partial coherence parameters (σ=NAi/NAo). (a)–(c) Circular scanning. (d)–(f) Mesh scanning. (g)–(i) Sample rotation. (j)–(l) Hybrid method. The OTFs of various ODT methods are shown as insets in the first row.
Fig. 5.
Fig. 5. Experimental assessment. (a) Cross-sectional slices of the reconstructed RI map of a silica bead in the xy, xz, and yz planes. (b) Phantom of an ideal 5-μm-diameter silica bead. (c) Experimental PSF of the optical system acquired using the deconvolution of the experimentally measured tomogram and the phantom. (d) Experimental PSF (obtained from the deconvolution) and theoretical PSF (obtained from theoretical OTF) viewed at various polar angles.
Fig. 6.
Fig. 6. Schematic of the optical setup. M, mirror; L, convex lens; CL, condenser lens; OL, objective lens; TL, tube lens; BS, beam splitter; and SMFC, single-mode fiber coupler.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δνx,yMesh=2nmν0(sinθi+sinθo),ΔνzMesh=nmν0(2cosθicosθo),Δνx,yCircle=2nmν0(sinθi+sinθo),ΔνzCircle=nmν0(1cosθo),Δνx,zSample=4nmν0sin(θo/2),ΔνySample=2nmν0sinθo,Δνx,y,zHybrid=4nmν0sin[(θi+θo)/2],
S˜(ν)=S˜*(ν),
Re[Sobs(r)]=Re[O(ν)S˜(ν)exp(jν·x)dν3]=Re[12{O(ν)+O(ν)}S˜(ν)exp(jν·x)dν3].
Oeff(ν)=12[O(ν)+O(ν)].
Δνx,yMesh(=2nmν0(sinθi+sinθo))Δνx,y,zHybrid(=4nmν0sin[(θi+θo)/2]).
Pexp(r)=O˜exp(r)=iFT[S˜obs(ν)/S˜(ν)],
Ptheory(r)=iFT[Otheory(ν)].
S˜obs(ν)=O(ν)S˜(ν).
Re[Sobs(r)]=Re[O(ν)S˜(ν)exp(ir·ν)dν3].
Re[Sobs(r)]=O(ν)[S˜r(ν)cos(ν·x)S˜i(ν)sin(ν·x)]dν3=12[O(ν)+O(ν)][S˜r(ν)cos(ν·x)S˜i(ν)sin(ν·x)]dν3=Oeff(ν)[S˜r(ν)cos(ν·x)S˜i(ν)sin(ν·x)]dν3=Re[Oeff(ν)S˜(ν)exp(jν·x)dν3],