Abstract

We propose a novel heterostructure based on 2D photonic crystals as broadband selective absorbers/emitters for solar thermophotovoltaics. Alternating hafnium oxide (HfO2) and titanium oxide (TiO2) filled cylinder cavities with tetragonal lattices are embedded into antireflection-coated tungsten (W) film. The simulated results show that the designed structures can obtain high solar collection efficiency ηc of 87.9% as an absorber and great spectral emission efficiency ηe of 81.6% as an emitter. Meanwhile, high average absorptivity of 84.5% under 45° oblique incidence exhibits good performance of wide-angle absorption. This study provides a new way to acquire broadband spectral selective absorbers/emitters.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter

Jinlin Song, Mengting Si, Qiang Cheng, and Zixue Luo
Appl. Opt. 55(6) 1284-1290 (2016)

Solar thermophotovoltaic system using nanostructures

Craig Ungaro, Stephen K. Gray, and Mool C. Gupta
Opt. Express 23(19) A1149-A1156 (2015)

Nanoimprinted superlattice metallic photonic crystal as ultraselective solar absorber

V. Rinnerbauer, E. Lausecker, F. Schäffler, P. Reininger, G. Strasser, R. D. Geil, J. D. Joannopoulos, M. Soljačić, and I. Celanovic
Optica 2(8) 743-746 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).
  2. J. Yu, Q. Li, and Z. Shu, “Dye-sensitized solar cells based on double-layered TiO2, composite films and enhanced photovoltaic performance,” Electrochim. Acta 56, 6293–6298 (2011).
    [Crossref]
  3. Q. Mao, M. Xie, Y. Shuai, and Y. Yuan, “Study on solar photo-thermal conversion efficiency of a solar parabolic dish system,” Environ. Prog. Sustain. 33, 1438–1444 (2014).
    [Crossref]
  4. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
    [Crossref]
  5. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145–15159 (2009).
    [Crossref]
  6. J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S. G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2014).
    [Crossref]
  7. G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu, and E. Wäckelgård, “Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers,” Solar Energy Mater. Sol. Cells 92, 1285–1292 (2008).
    [Crossref]
  8. N. Jeon, J. J. Hernandez, D. Rosenmann, S. K. Gray, A. B. F. Martinson, and J. J. Foley, “Pareto optimal spectrally selective emitters for thermophotovoltaics via weak absorber critical coupling,” Adv. Energy. Mater. 8, 1801035 (2018).
    [Crossref]
  9. Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
    [Crossref]
  10. Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S. G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711–21718 (2014).
    [Crossref]
  11. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
    [Crossref]
  12. S. D. Xu, Y. Shuai, J. H. Zhang, X. Huang, and H. P. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
    [Crossref]
  13. A. Dan, J. Jyothi, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Spectrally selective absorber coating of WAlN/WAlON/Al2O3 for solar thermal applications,” Solar Energy Mater. Sol. Cells 157, 716–726 (2016).
    [Crossref]
  14. Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, and A. Bousquet, “Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings,” Solar Energy Mater. Sol. Cells 134, 373–380 (2015).
    [Crossref]
  15. B. W. Li, D. Qi, X. Wang, F. Wang, Y. Nie, and R. Gong, “Enhanced spectra selectivity of solar absorber film with Ti/Si3N4 photonic structures,” Mater. Lett. 201, 5–8 (2017).
    [Crossref]
  16. Y. Nam, Y. X. Yeng, L. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Sol. Cells 122, 287–296 (2014).
    [Crossref]
  17. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
    [Crossref]
  18. I. Celanovic, J. Natalija, and K. John, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
    [Crossref]
  19. H. Sai, K. Yoshiaki, and Y. Hiroo, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
    [Crossref]
  20. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
    [Crossref]
  21. J. B. Chou, K. Smyth, and S. Kim, “Low aspect ratio nanophotonic filled cavities with Q-matching for scalable thermophotovoltaic power conversion,” 26th IEEE Photonics Conference, Bellevue, Washington (2013), pp. 576–577.
  22. Y. Matsuno and S. Atsushi, “Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings,” Opt. Commun. 385, 118–123 (2017).
    [Crossref]
  23. P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annul. Rev. Heat Trans. 15, 231–254 (2012).
    [Crossref]
  24. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  25. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanovi, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
    [Crossref]
  26. C. E. Kennedy, “Review of mid- to high-temperature solar selective absorber materials,“ (National Renewable Energy Laboratory, 2002).
  27. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51, 6789–6798 (2012).
    [Crossref]
  28. ASTMG173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37-degree Tilted Surface (ASTM International, 2005).
  29. J. D. T. Kruschwitz and W. T. Pawlewicz, “Optical and durability properties of infrared transmitting thin films,” Appl. Opt. 36, 2157–2159 (1997).
    [Crossref]
  30. T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, O. Ivan, S. A. K. Ernst-Bernhard, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
    [Crossref]
  31. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27, 1203–1209 (1988).
    [Crossref]
  32. M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25, 16715–16724 (2017).
    [Crossref]
  33. X. Tian and Z. Y. Li, “Visible-near infrared ultra-broadband polarization independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4, 146–152 (2016).
    [Crossref]

2018 (1)

N. Jeon, J. J. Hernandez, D. Rosenmann, S. K. Gray, A. B. F. Martinson, and J. J. Foley, “Pareto optimal spectrally selective emitters for thermophotovoltaics via weak absorber critical coupling,” Adv. Energy. Mater. 8, 1801035 (2018).
[Crossref]

2017 (4)

S. D. Xu, Y. Shuai, J. H. Zhang, X. Huang, and H. P. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

B. W. Li, D. Qi, X. Wang, F. Wang, Y. Nie, and R. Gong, “Enhanced spectra selectivity of solar absorber film with Ti/Si3N4 photonic structures,” Mater. Lett. 201, 5–8 (2017).
[Crossref]

Y. Matsuno and S. Atsushi, “Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings,” Opt. Commun. 385, 118–123 (2017).
[Crossref]

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25, 16715–16724 (2017).
[Crossref]

2016 (4)

X. Tian and Z. Y. Li, “Visible-near infrared ultra-broadband polarization independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4, 146–152 (2016).
[Crossref]

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, O. Ivan, S. A. K. Ernst-Bernhard, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

A. Dan, J. Jyothi, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Spectrally selective absorber coating of WAlN/WAlON/Al2O3 for solar thermal applications,” Solar Energy Mater. Sol. Cells 157, 716–726 (2016).
[Crossref]

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

2015 (1)

Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, and A. Bousquet, “Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings,” Solar Energy Mater. Sol. Cells 134, 373–380 (2015).
[Crossref]

2014 (4)

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S. G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, L. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S. G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711–21718 (2014).
[Crossref]

Q. Mao, M. Xie, Y. Shuai, and Y. Yuan, “Study on solar photo-thermal conversion efficiency of a solar parabolic dish system,” Environ. Prog. Sustain. 33, 1438–1444 (2014).
[Crossref]

2013 (1)

2012 (3)

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51, 6789–6798 (2012).
[Crossref]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annul. Rev. Heat Trans. 15, 231–254 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref]

2011 (2)

J. Yu, Q. Li, and Z. Shu, “Dye-sensitized solar cells based on double-layered TiO2, composite films and enhanced photovoltaic performance,” Electrochim. Acta 56, 6293–6298 (2011).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (2)

I. Celanovic, J. Natalija, and K. John, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu, and E. Wäckelgård, “Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers,” Solar Energy Mater. Sol. Cells 92, 1285–1292 (2008).
[Crossref]

2003 (1)

H. Sai, K. Yoshiaki, and Y. Hiroo, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[Crossref]

1997 (1)

1988 (1)

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Aleksandrova, A.

Alexander, R. W.

Araghchini, M.

Atsushi, S.

Y. Matsuno and S. Atsushi, “Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings,” Opt. Commun. 385, 118–123 (2017).
[Crossref]

Barshilia, H. C.

A. Dan, J. Jyothi, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Spectrally selective absorber coating of WAlN/WAlON/Al2O3 for solar thermal applications,” Solar Energy Mater. Sol. Cells 157, 716–726 (2016).
[Crossref]

Basu, B.

A. Dan, J. Jyothi, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Spectrally selective absorber coating of WAlN/WAlON/Al2O3 for solar thermal applications,” Solar Energy Mater. Sol. Cells 157, 716–726 (2016).
[Crossref]

Bell, R. J.

Bermel, P.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

Y. Nam, Y. X. Yeng, L. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annul. Rev. Heat Trans. 15, 231–254 (2012).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

Bousquet, A.

Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, and A. Bousquet, “Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings,” Solar Energy Mater. Sol. Cells 134, 373–380 (2015).
[Crossref]

Celanovi, I.

Celanovic, I.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S. G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, L. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S. G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711–21718 (2014).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annul. Rev. Heat Trans. 15, 231–254 (2012).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

I. Celanovic, J. Natalija, and K. John, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

Chan, W.

Chan, W. R.

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanovi, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref]

Chashnikova, M.

Chattopadhyay, K.

A. Dan, J. Jyothi, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Spectrally selective absorber coating of WAlN/WAlON/Al2O3 for solar thermal applications,” Solar Energy Mater. Sol. Cells 157, 716–726 (2016).
[Crossref]

Chen, L.

Chou, J. B.

Dan, A.

A. Dan, J. Jyothi, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Spectrally selective absorber coating of WAlN/WAlON/Al2O3 for solar thermal applications,” Solar Energy Mater. Sol. Cells 157, 716–726 (2016).
[Crossref]

Dietrich, K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, O. Ivan, S. A. K. Ernst-Bernhard, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Ernst-Bernhard, S. A. K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, O. Ivan, S. A. K. Ernst-Bernhard, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Fan, S.

Fedosenko, O.

Flores, Y.

Foley, J. J.

N. Jeon, J. J. Hernandez, D. Rosenmann, S. K. Gray, A. B. F. Martinson, and J. J. Foley, “Pareto optimal spectrally selective emitters for thermophotovoltaics via weak absorber critical coupling,” Adv. Energy. Mater. 8, 1801035 (2018).
[Crossref]

Forbes, A.

G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu, and E. Wäckelgård, “Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers,” Solar Energy Mater. Sol. Cells 92, 1285–1292 (2008).
[Crossref]

Franta, D.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, O. Ivan, S. A. K. Ernst-Bernhard, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Ghebrebrhan, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

Gong, R.

B. W. Li, D. Qi, X. Wang, F. Wang, Y. Nie, and R. Gong, “Enhanced spectra selectivity of solar absorber film with Ti/Si3N4 photonic structures,” Mater. Lett. 201, 5–8 (2017).
[Crossref]

Gray, S. K.

N. Jeon, J. J. Hernandez, D. Rosenmann, S. K. Gray, A. B. F. Martinson, and J. J. Foley, “Pareto optimal spectrally selective emitters for thermophotovoltaics via weak absorber critical coupling,” Adv. Energy. Mater. 8, 1801035 (2018).
[Crossref]

Green, M. A.

M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).

Gruska, B.

Hamam, R.

Hernandez, J. J.

N. Jeon, J. J. Hernandez, D. Rosenmann, S. K. Gray, A. B. F. Martinson, and J. J. Foley, “Pareto optimal spectrally selective emitters for thermophotovoltaics via weak absorber critical coupling,” Adv. Energy. Mater. 8, 1801035 (2018).
[Crossref]

Hiroo, Y.

H. Sai, K. Yoshiaki, and Y. Hiroo, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[Crossref]

Huang, X.

S. D. Xu, Y. Shuai, J. H. Zhang, X. Huang, and H. P. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

Ivan, O.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, O. Ivan, S. A. K. Ernst-Bernhard, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Jensen, K. F.

Jeon, N.

N. Jeon, J. J. Hernandez, D. Rosenmann, S. K. Gray, A. B. F. Martinson, and J. J. Foley, “Pareto optimal spectrally selective emitters for thermophotovoltaics via weak absorber critical coupling,” Adv. Energy. Mater. 8, 1801035 (2018).
[Crossref]

Joannopoulos, J. D.

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S. G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711–21718 (2014).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanovi, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annul. Rev. Heat Trans. 15, 231–254 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

John, K.

I. Celanovic, J. Natalija, and K. John, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

Johnson, S. G.

Jyothi, J.

A. Dan, J. Jyothi, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Spectrally selective absorber coating of WAlN/WAlON/Al2O3 for solar thermal applications,” Solar Energy Mater. Sol. Cells 157, 716–726 (2016).
[Crossref]

Katumba, G.

G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu, and E. Wäckelgård, “Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers,” Solar Energy Mater. Sol. Cells 92, 1285–1292 (2008).
[Crossref]

Kennedy, C. E.

C. E. Kennedy, “Review of mid- to high-temperature solar selective absorber materials,“ (National Renewable Energy Laboratory, 2002).

Kim, S.

J. B. Chou, K. Smyth, and S. Kim, “Low aspect ratio nanophotonic filled cavities with Q-matching for scalable thermophotovoltaic power conversion,” 26th IEEE Photonics Conference, Bellevue, Washington (2013), pp. 576–577.

Kim, S. G.

Kischkat, J.

Klinkmüller, M.

Kroker, S.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, O. Ivan, S. A. K. Ernst-Bernhard, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Kruschwitz, J. D. T.

Lee, J.

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annul. Rev. Heat Trans. 15, 231–254 (2012).
[Crossref]

Lenert, A.

Lenert, L.

Y. Nam, Y. X. Yeng, L. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Li, B. W.

B. W. Li, D. Qi, X. Wang, F. Wang, Y. Nie, and R. Gong, “Enhanced spectra selectivity of solar absorber film with Ti/Si3N4 photonic structures,” Mater. Lett. 201, 5–8 (2017).
[Crossref]

Li, Q.

J. Yu, Q. Li, and Z. Shu, “Dye-sensitized solar cells based on double-layered TiO2, composite films and enhanced photovoltaic performance,” Electrochim. Acta 56, 6293–6298 (2011).
[Crossref]

Li, Z. Y.

Lu, J.

G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu, and E. Wäckelgård, “Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers,” Solar Energy Mater. Sol. Cells 92, 1285–1292 (2008).
[Crossref]

Luo, M.

Machulik, S.

Makiwa, G.

G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu, and E. Wäckelgård, “Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers,” Solar Energy Mater. Sol. Cells 92, 1285–1292 (2008).
[Crossref]

Mao, Q.

Q. Mao, M. Xie, Y. Shuai, and Y. Yuan, “Study on solar photo-thermal conversion efficiency of a solar parabolic dish system,” Environ. Prog. Sustain. 33, 1438–1444 (2014).
[Crossref]

Martinson, A. B. F.

N. Jeon, J. J. Hernandez, D. Rosenmann, S. K. Gray, A. B. F. Martinson, and J. J. Foley, “Pareto optimal spectrally selective emitters for thermophotovoltaics via weak absorber critical coupling,” Adv. Energy. Mater. 8, 1801035 (2018).
[Crossref]

Marton, C. H.

Masselink, W. T.

Matsuno, Y.

Y. Matsuno and S. Atsushi, “Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings,” Opt. Commun. 385, 118–123 (2017).
[Crossref]

Monastyrskyi, G.

Mwakikunga, B.

G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu, and E. Wäckelgård, “Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers,” Solar Energy Mater. Sol. Cells 92, 1285–1292 (2008).
[Crossref]

Nam, Y.

Y. Nam, Y. X. Yeng, L. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Natalija, J.

I. Celanovic, J. Natalija, and K. John, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

Newquist, L. A.

Nie, Y.

B. W. Li, D. Qi, X. Wang, F. Wang, Y. Nie, and R. Gong, “Enhanced spectra selectivity of solar absorber film with Ti/Si3N4 photonic structures,” Mater. Lett. 201, 5–8 (2017).
[Crossref]

Ning, Y.

Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, and A. Bousquet, “Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings,” Solar Energy Mater. Sol. Cells 134, 373–380 (2015).
[Crossref]

Olumekor, L.

G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu, and E. Wäckelgård, “Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers,” Solar Energy Mater. Sol. Cells 92, 1285–1292 (2008).
[Crossref]

Ordal, M. A.

Pawlewicz, W. T.

Peters, S.

Pfeiffer, K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, O. Ivan, S. A. K. Ernst-Bernhard, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Puffky, O.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, O. Ivan, S. A. K. Ernst-Bernhard, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Qi, D.

B. W. Li, D. Qi, X. Wang, F. Wang, Y. Nie, and R. Gong, “Enhanced spectra selectivity of solar absorber film with Ti/Si3N4 photonic structures,” Mater. Lett. 201, 5–8 (2017).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Querry, M. R.

Rephaeli, E.

Rinnerbauer, V.

Rosenmann, D.

N. Jeon, J. J. Hernandez, D. Rosenmann, S. K. Gray, A. B. F. Martinson, and J. J. Foley, “Pareto optimal spectrally selective emitters for thermophotovoltaics via weak absorber critical coupling,” Adv. Energy. Mater. 8, 1801035 (2018).
[Crossref]

Sai, H.

H. Sai, K. Yoshiaki, and Y. Hiroo, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[Crossref]

Sakr, E.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

Semtsiv, M.

Senkevich, J. J.

Shen, S.

Shen, Y.

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Shu, Z.

J. Yu, Q. Li, and Z. Shu, “Dye-sensitized solar cells based on double-layered TiO2, composite films and enhanced photovoltaic performance,” Electrochim. Acta 56, 6293–6298 (2011).
[Crossref]

Shuai, Y.

S. D. Xu, Y. Shuai, J. H. Zhang, X. Huang, and H. P. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

Q. Mao, M. Xie, Y. Shuai, and Y. Yuan, “Study on solar photo-thermal conversion efficiency of a solar parabolic dish system,” Environ. Prog. Sustain. 33, 1438–1444 (2014).
[Crossref]

Siefke, T.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, O. Ivan, S. A. K. Ernst-Bernhard, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Smyth, K.

J. B. Chou, K. Smyth, and S. Kim, “Low aspect ratio nanophotonic filled cavities with Q-matching for scalable thermophotovoltaic power conversion,” 26th IEEE Photonics Conference, Bellevue, Washington (2013), pp. 576–577.

Soljacic, M.

Y. Nam, Y. X. Yeng, L. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S. G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2014).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S. G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711–21718 (2014).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanovi, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annul. Rev. Heat Trans. 15, 231–254 (2012).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

Sun, Y.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, and A. Bousquet, “Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings,” Solar Energy Mater. Sol. Cells 134, 373–380 (2015).
[Crossref]

Tan, H. P.

S. D. Xu, Y. Shuai, J. H. Zhang, X. Huang, and H. P. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

Tian, X.

Tomasella, E.

Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, and A. Bousquet, “Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings,” Solar Energy Mater. Sol. Cells 134, 373–380 (2015).
[Crossref]

Tünnermann, A.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, O. Ivan, S. A. K. Ernst-Bernhard, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Wäckelgård, E.

G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu, and E. Wäckelgård, “Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers,” Solar Energy Mater. Sol. Cells 92, 1285–1292 (2008).
[Crossref]

Wang, C.

Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, and A. Bousquet, “Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings,” Solar Energy Mater. Sol. Cells 134, 373–380 (2015).
[Crossref]

Wang, E. N.

Y. Nam, Y. X. Yeng, L. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S. G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2014).
[Crossref]

Wang, F.

B. W. Li, D. Qi, X. Wang, F. Wang, Y. Nie, and R. Gong, “Enhanced spectra selectivity of solar absorber film with Ti/Si3N4 photonic structures,” Mater. Lett. 201, 5–8 (2017).
[Crossref]

Wang, W.

Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, and A. Bousquet, “Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings,” Solar Energy Mater. Sol. Cells 134, 373–380 (2015).
[Crossref]

Wang, X.

B. W. Li, D. Qi, X. Wang, F. Wang, Y. Nie, and R. Gong, “Enhanced spectra selectivity of solar absorber film with Ti/Si3N4 photonic structures,” Mater. Lett. 201, 5–8 (2017).
[Crossref]

Wu, S.

Wu, Y.

Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, and A. Bousquet, “Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings,” Solar Energy Mater. Sol. Cells 134, 373–380 (2015).
[Crossref]

Xie, M.

Q. Mao, M. Xie, Y. Shuai, and Y. Yuan, “Study on solar photo-thermal conversion efficiency of a solar parabolic dish system,” Environ. Prog. Sustain. 33, 1438–1444 (2014).
[Crossref]

Xu, S. D.

S. D. Xu, Y. Shuai, J. H. Zhang, X. Huang, and H. P. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

Xue, Y.

Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, and A. Bousquet, “Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings,” Solar Energy Mater. Sol. Cells 134, 373–380 (2015).
[Crossref]

Yeng, Y. X.

Y. Nam, Y. X. Yeng, L. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S. G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2014).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S. G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711–21718 (2014).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanovi, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

Yoshiaki, K.

H. Sai, K. Yoshiaki, and Y. Hiroo, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[Crossref]

Yu, J.

J. Yu, Q. Li, and Z. Shu, “Dye-sensitized solar cells based on double-layered TiO2, composite films and enhanced photovoltaic performance,” Electrochim. Acta 56, 6293–6298 (2011).
[Crossref]

Yuan, Y.

Q. Mao, M. Xie, Y. Shuai, and Y. Yuan, “Study on solar photo-thermal conversion efficiency of a solar parabolic dish system,” Environ. Prog. Sustain. 33, 1438–1444 (2014).
[Crossref]

Zhang, J. H.

S. D. Xu, Y. Shuai, J. H. Zhang, X. Huang, and H. P. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

Zhao, S.

Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, and A. Bousquet, “Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings,” Solar Energy Mater. Sol. Cells 134, 373–380 (2015).
[Crossref]

Zhou, L.

Zhou, Y.

Zhou, Z.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

Adv. Energy. Mater. (1)

N. Jeon, J. J. Hernandez, D. Rosenmann, S. K. Gray, A. B. F. Martinson, and J. J. Foley, “Pareto optimal spectrally selective emitters for thermophotovoltaics via weak absorber critical coupling,” Adv. Energy. Mater. 8, 1801035 (2018).
[Crossref]

Adv. Opt. Mater. (1)

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, O. Ivan, S. A. K. Ernst-Bernhard, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Annul. Rev. Heat Trans. (1)

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annul. Rev. Heat Trans. 15, 231–254 (2012).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

I. Celanovic, J. Natalija, and K. John, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

H. Sai, K. Yoshiaki, and Y. Hiroo, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[Crossref]

Electrochim. Acta (1)

J. Yu, Q. Li, and Z. Shu, “Dye-sensitized solar cells based on double-layered TiO2, composite films and enhanced photovoltaic performance,” Electrochim. Acta 56, 6293–6298 (2011).
[Crossref]

Environ. Prog. Sustain. (1)

Q. Mao, M. Xie, Y. Shuai, and Y. Yuan, “Study on solar photo-thermal conversion efficiency of a solar parabolic dish system,” Environ. Prog. Sustain. 33, 1438–1444 (2014).
[Crossref]

J. Appl. Phys. (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Mater. Lett. (1)

B. W. Li, D. Qi, X. Wang, F. Wang, Y. Nie, and R. Gong, “Enhanced spectra selectivity of solar absorber film with Ti/Si3N4 photonic structures,” Mater. Lett. 201, 5–8 (2017).
[Crossref]

Nanophotonics (1)

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

Opt. Commun. (1)

Y. Matsuno and S. Atsushi, “Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings,” Opt. Commun. 385, 118–123 (2017).
[Crossref]

Opt. Express (6)

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanovi, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref]

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25, 16715–16724 (2017).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S. G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711–21718 (2014).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145–15159 (2009).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S. G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2014).
[Crossref]

Photon. Res. (1)

Phys. Rev. A (1)

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref]

Sol. Energy (1)

S. D. Xu, Y. Shuai, J. H. Zhang, X. Huang, and H. P. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

Solar Energy Mater. Sol. Cells (4)

A. Dan, J. Jyothi, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Spectrally selective absorber coating of WAlN/WAlON/Al2O3 for solar thermal applications,” Solar Energy Mater. Sol. Cells 157, 716–726 (2016).
[Crossref]

Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, and A. Bousquet, “Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings,” Solar Energy Mater. Sol. Cells 134, 373–380 (2015).
[Crossref]

G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu, and E. Wäckelgård, “Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers,” Solar Energy Mater. Sol. Cells 92, 1285–1292 (2008).
[Crossref]

Y. Nam, Y. X. Yeng, L. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Other (5)

M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).

J. B. Chou, K. Smyth, and S. Kim, “Low aspect ratio nanophotonic filled cavities with Q-matching for scalable thermophotovoltaic power conversion,” 26th IEEE Photonics Conference, Bellevue, Washington (2013), pp. 576–577.

C. E. Kennedy, “Review of mid- to high-temperature solar selective absorber materials,“ (National Renewable Energy Laboratory, 2002).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

ASTMG173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37-degree Tilted Surface (ASTM International, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of the STPV system consists of solar concentrator, selective absorber, selective emitter, PV cell, and heat sink. (b) Spectral performance of an ideal selective absorber (green line) and an ideal selective emitter (purple line) as well as the sun radiation spectrum (AM1.5 standard) and the blackbody-like emission spectra at 1300 K (calculated by Planck’s law of blackbody radiation).
Fig. 2.
Fig. 2. Schematic of the proposed heterostructure filled with HfO2 and TiO2 given the radius r, period p, depth d, free-space wave vector k0, incident angle θi, and azimuthal angle ϕ: (a) cross-section view; (b) overhead view; (c) side view.
Fig. 3.
Fig. 3. Simulated absorption spectra of the heterostructure with (a) various r and (b) various d0.
Fig. 4.
Fig. 4. (a) Simulated normal absorption spectra averaged over azimuthal angle ϕ of the heterostructure (p=0.5  μm, r=0.2  μm, d=2.5  μm, d0=78.9  nm) and the structures filled with HfO2 (p=0.62  μm, r=0.23  μm, d=2.5  μm, d0=78.9  nm) and TiO2 (p=0.46  μm, r=0.16  μm, d=2.5  μm, d0=65.8  nm) designed for a cut-off wavelength of 2 μm as absorbers in 0.3–5 μm. (b) Simulated normal absorption spectra averaged over azimuthal angle ϕ of the heterostructure (p=0.62  μm, r=0.26  μm, d=2.5  μm, d0=92.1  nm) and the structures filled with HfO2 (p=0.74  μm, r=0.3  μm, d=2.5  μm, d0=78.9  nm) and TiO2 (p=0.56  μm, r=0.21  μm, d=2.5  μm, d0=63.3  nm) designed for a cut-off wavelength of 2.2 μm as emitters in 0.3–5 μm.
Fig. 5.
Fig. 5. Simulated absorptivity as a function of incident angles and wavelength of the heterostructure for (a) TE and (b) TM modes, respectively.
Fig. 6.
Fig. 6. Normalized electric field intensity distributions of the absorption peaks at (a) 0.43 μm, (b) 1.72 μm, a little peak at (c) 3.35 μm, and a flat point at (d) 5 μm in the high reflection region.
Fig. 7.
Fig. 7. (a) Simulated normal absorption spectra of the structure with different substrates and filling materials: (1) Al2O3-Si3N4-filled TaPCs (p=0.54  μm, r=0.21  μm, d0=83  nm); (2) HfO2-SiO2-filled WPCs (p=0.5  μm, r=0.2  μm, d0=75  nm); (3) Al2O3-Si3N4-filled WPCs (p=0.54  μm, r=0.21  μm, d0=83  nm). (b) Simulated normal absorption spectra of SiO2-HfO2-TiO2-filled WPCs and HfO2-TiO2-filled WPCs (p=0.5  μm, r=0.2  μm, d0=78.9  nm).

Tables (2)

Tables Icon

Table 1. Absorptivity (α), Emissivity (ϵ), and Solar Selectivity (α/ϵ) of the Heterostructure with Different d0

Tables Icon

Table 2. Calculated Solar Collection Efficiency (ηc) and Spectral Emission Efficiency (ηe) of the Heterostructure and the HfO2/TiO2-Filled WPCs at 1300 K

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2nd0=(2k+1)2λ0,k=0,1,2,
λij=2π(r+δ(λij))·nχij,
ηc=α¯ϵ¯σT4CGs,
ϵ¯=λcdλϵ(λ)/{λ5[exp(hc/λkT)1]}λcdλ/{λ5[exp(hc/λkT)1]},
θi=sin1(λmp1),
ηe=Qe,λλgQe=0λgdλϵ(λ)/{λ5[exp(hc/λkT)1]}0dλϵ(λ)/{λ5[exp(hc/λkT)1]}.

Metrics