Abstract

In this paper, we discuss two effective methods for computing optical propagations using two-dimensional (2D) discrete Fourier transforms: the matrix triple product (MTP) and the chirp z-transform (CZT) and analyze their performance both in theory and via benchmarks compared to the performance of a traditional padded fast Fourier transform (FFT). We show that, in many regimes of interest for phase-retrieval algorithms, the MTP or CZT is comparable to or better than the FFT in terms of run time while offering more flexible control over the sampling. We propose that for many applications, the CZT makes a robust general purpose alternative to the padded 2D FFT.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase retrieval with unknown sampling factors via the two-dimensional chirp z-transform

Alden S. Jurling and James R. Fienup
J. Opt. Soc. Am. A 31(9) 1904-1911 (2014)

Visible–infrared two-dimensional Fourier-transform spectroscopy

Nadia Belabas and Manuel Joffre
Opt. Lett. 27(22) 2043-2045 (2002)

Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique

Roland Schmehl, Brent M. Nebeker, and E. Dan Hirleman
J. Opt. Soc. Am. A 14(11) 3026-3036 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (75)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription