Abstract

Thin mirrors, important for next-generation space telescopes, are difficult to accurately fabricate. One approach is to fabricate a mirror using traditional methods, then to bend the mirror using surface stress to correct residual height errors. We present two surface stress fields that correct any height error field in thin flat plates. For round plates, we represent these as linear combinations of Zernike polynomials. We show that equibiaxial stress, a common and easy-to-generate state of stress, cannot generally be used to make exact corrections. All three components of the surface stress are needed for exact corrections. We describe a process to design an equibiaxial stress field to make approximate corrections in round plates. Finally, we apply the three stress fields to simulate flattening of a measured glass wafer with 3.64 μm root-mean-squared (RMS) height error. Using our chosen equibiaxial stress field, the residual error is 0.34 μm RMS. In comparison, using all three stress components, the correction is exact and the required RMS stress is about 2.5× smaller than when using equibiaxial stress only. We compare the deformation with a finite element model and find agreement within 10 nm RMS in all three cases.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deformation verification and surface improvement of active stressed lap for 4  m-class primary mirror fabrication

Hongshen Zhao, Xiaojin Li, Bin Fan, and Zhige Zeng
Appl. Opt. 54(10) 2658-2664 (2015)

Large amplitude wavefront generation and correction with membrane mirrors

Peter Kurczynski, Harold M. Dyson, and Bernard Sadoulet
Opt. Express 14(2) 509-517 (2006)

Wavefront correction with a 37-actuator ferrofluid deformable mirror

Denis Brousseau, Ermanno F. Borra, and Simon Thibault
Opt. Express 15(26) 18190-18199 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription