Abstract

Direct or forward wave scattering admits three classical regimes in which the map from scatterer properties or scattering potential to the data is linear, namely, the Born, Rytov, and physical optics approximations. In this paper we derive a new decomposition of the forward scattering map which reveals a previously unknown approximate bilinear forward scattering relation. The latter is data-driven, i.e., it involves exact scattering data, and has the useful property that the dependence on the data and the potential is bilinear. This fundamental result naturally leads to a new linear inverse scattering approach that generalizes and is more broadly applicable than the classical Born-approximation-based imaging. The developed scattering and inverse scattering theory are presented in both plane wave and multipole expansion representations, and the possibility of exploiting support information is also formally addressed in the multipole domain. The paper includes computer simulations illustrating the derived theory and algorithms.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Inverse scattering and diffraction tomography in cylindrical background media

Janice Y. Cheng and Anthony J. Devaney
J. Opt. Soc. Am. A 23(5) 1038-1047 (2006)

Intensity-only signal-subspace-based imaging

Edwin A. Marengo, Ronald D. Hernandez, and Hanoch Lev-Ari
J. Opt. Soc. Am. A 24(11) 3619-3635 (2007)

Quadratic distorted approximation for the inverse scattering of dielectric cylinders

Giovanni Leone, Adriana Brancaccio, and Rocco Pierri
J. Opt. Soc. Am. A 18(3) 600-609 (2001)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (105)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription