Abstract

It is an ill-posed problem to recover the true scene colors from a color biased image by discounting the effects of scene illuminant and camera spectral sensitivity (CSS) at the same time. Most color constancy (CC) models have been designed to first estimate the illuminant color, which is then removed from the color biased image to obtain an image taken under white light, without the explicit consideration of CSS effect on CC. This paper first studies the CSS effect on illuminant estimation arising in the inter-dataset-based CC (inter-CC), i.e., training a CC model on one dataset and then testing on another dataset captured by a distinct CSS. We show the clear degradation of existing CC models for inter-CC application. Then a simple way is proposed to overcome such degradation by first learning quickly a transform matrix between the two distinct CSSs (CSS-1 and CSS-2). The learned matrix is then used to convert the data (including the illuminant ground truth and the color-biased images) rendered under CSS-1 into CSS-2, and then train and apply the CC model on the color-biased images under CSS-2 without the need of burdensome acquiring of the training set under CSS-2. Extensive experiments on synthetic and real images show that our method can clearly improve the inter-CC performance for traditional CC algorithms. We suggest that, by taking the CSS effect into account, it is more likely to obtain the truly color constant images invariant to the changes of both illuminant and camera sensors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Edge-moment-based color constancy using illumination-coherent regularized regression

Meng Wu, Kai Luo, Jianjun Dang, and Jun Zhou
J. Opt. Soc. Am. A 32(9) 1707-1716 (2015)

Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution

Dongliang Cheng, Dilip K. Prasad, and Michael S. Brown
J. Opt. Soc. Am. A 31(5) 1049-1058 (2014)

Estimating the scene illumination chromaticity by using a neural network

Vlad C. Cardei, Brian Funt, and Kobus Barnard
J. Opt. Soc. Am. A 19(12) 2374-2386 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription