Abstract

Optical imaging through complex scattering media is one of the major technical challenges with important applications in many research fields, ranging from biomedical imaging to astronomical telescopy to spatially multiplexed optical communications. Various approaches for imaging through a turbid layer have been recently proposed that exploit the advantage of object information encoded in correlations of the random optical fields. Here we propose and experimentally demonstrate an alternative approach for single-shot imaging of objects hidden behind an opaque scattering layer. The proposed technique relies on retrieving the interference fringes projected behind the scattering medium, which leads to complex field reconstruction, from far-field laser speckle interferometry with two-point intensity correlation measurement. We demonstrate that under suitable conditions, it is possible to perform imaging to reconstruct the complex amplitude of objects situated at different depths.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lensless complex amplitude image retrieval through a visually opaque scattering medium

Bhargab Das, Nandan S. Bisht, R. V. Vinu, and Rakesh Kumar Singh
Appl. Opt. 56(16) 4591-4597 (2017)

Lensless Stokes holography with the Hanbury Brown-Twiss approach

Darshika Singh and Rakesh Kumar Singh
Opt. Express 26(8) 10801-10812 (2018)

Holographic imaging through a scattering medium by diffuser-aided statistical averaging

Michael J. Purcell, Manish Kumar, Stephen C. Rand, and Vasudevan Lakshminarayanan
J. Opt. Soc. Am. A 33(7) 1291-1297 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomenon in Optics: Theory and Applications (Roberts & Co., 2007).
  2. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
    [Crossref]
  3. A. P. Mosk, Ad. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
    [Crossref]
  4. H. Yu, J. C. Park, K. R. Lee, J. H. Yoon, K. D. Kim, S. W. Lee, and Y. K. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Current Appl. Phys. 15, 632–641 (2015).
    [Crossref]
  5. F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
    [Crossref]
  6. I. Freund, “Looking through walls and around corners,” Phys. A 168, 49–65 (1990).
    [Crossref]
  7. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref]
  8. D. B. Cankey, A. N. Brown, A. M. Carvaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20, 4840–4849 (2012).
    [Crossref]
  9. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
    [Crossref]
  10. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [Crossref]
  11. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745–752 (2012).
    [Crossref]
  12. S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
    [Crossref]
  13. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
    [Crossref]
  14. C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
    [Crossref]
  15. J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013).
    [Crossref]
  16. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
    [Crossref]
  17. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81–84 (2010).
    [Crossref]
  18. J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering medium,” Phys. Rev. Lett. 113, 263903 (2014).
    [Crossref]
  19. Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 6800213 (2014).
    [Crossref]
  20. M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
    [Crossref]
  21. E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1, 227–232 (2014).
    [Crossref]
  22. H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21, 12539–12545 (2013).
    [Crossref]
  23. O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1, 170–174 (2014).
    [Crossref]
  24. H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, Ji.-Y. Kim, and Y. K. Park, “Depth enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22, 7514–7523 (2014).
    [Crossref]
  25. X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22, 3405–3413 (2014).
    [Crossref]
  26. X. Xu, H. Liu, and L. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
    [Crossref]
  27. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time reversed ultrasound encoded light,” Nat. Commun. 3, 928–936 (2012).
    [Crossref]
  28. V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14, 2499–2504 (2014).
    [Crossref]
  29. V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21, 23985–23996 (2013).
    [Crossref]
  30. M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
    [Crossref]
  31. J. Bertolotti, E. G. van Putten, C. Blum, Ad. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [Crossref]
  32. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
    [Crossref]
  33. L. I. Goldfischer, “Autocorrelation function and power spectral density of laser produced speckle patterns,” J. Opt. Soc. Am 55, 247–253 (1965).
    [Crossref]
  34. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).
  35. K. T. Takasaki and J. W. Fleischer, “Phase-space measurement for depth-resolved memory-effect imaging,” Opt. Express 22, 31426–31433 (2014).
    [Crossref]
  36. H. Liu, E. Jonas, L. Tian, Z. Jingshan, B. Recht, and L. Waller, “3D imaging in volumetric scattering media using phase-space measurements,” Opt. Express 23, 14461–14471 (2015).
    [Crossref]
  37. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light: Sci. Appl. 6, e16219 (2017).
    [Crossref]
  38. R. K. Singh, R. V. Vinu, and A. M. Sharma, “Recovery of complex valued objects from two-point intensity correlation measurement,” Appl. Phys. Lett. 104, 111108 (2014).
    [Crossref]
  39. R. K. Singh, A. M. Sharma, and B. Das, “Quantitative phase-contrast imaging through a scattering medium,” Opt. Lett. 39, 5054–5057 (2014).
    [Crossref]
  40. P. Hariharan, Optical Interferometry (Academic, 2003).
  41. J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
    [Crossref]
  42. K. Kogelnik and K. S. Pennington, “Holographic imaging through random medium,” J. Opt. Soc. Am. 58, 273–274 (1968).
    [Crossref]
  43. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
    [Crossref]
  44. M. J. Purcell, M. Kumar, S. C. Rand, and V. Lakshminarayanan, “Holographic imaging through a scattering medium by diffuser-aided statistical averaging,” J. Opt. Soc. Am. A 33, 1291–1297 (2016).
    [Crossref]
  45. D. N. Naik, R. K. Singh, T. Ezawa, Y. Miyamoto, and M. Takeda, “Photon correlation holography,” Opt. Express 19, 1408–1421 (2011).
    [Crossref]
  46. J. C. Dainty and D. Newman, “Detection of gratings hidden by diffusers using photon correlation technique,” Opt. Lett. 8, 608–610 (1983).
    [Crossref]
  47. R. K. Singh, S. Vyas, and Y. Miyamoto, “Interference of coherence waves,” in Optics & Photonics International Congress, Yokohama, Japan (2016).
  48. M. Takeda, W. Wang, D. N. Naik, and R. K. Singh, “Spatial statistical optics and spatial correlation holography: A Review,” Opt. Rev. 21, 849–861 (2014).
    [Crossref]
  49. J. W. Goodman, Statistical Optics (Wiley-Interscience, 2000).
  50. J. C. Dainty, Laser Speckle and Related Phenomenon (Springer, 1884).
  51. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  52. A. M. Weiner, Ultrafast Optics (Wiley, 2009).
  53. J. W. Goodman, Introduction to Fourier Optics (Mc-Graw Hill, 1996).
  54. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
    [Crossref]

2017 (1)

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light: Sci. Appl. 6, e16219 (2017).
[Crossref]

2016 (1)

2015 (5)

H. Liu, E. Jonas, L. Tian, Z. Jingshan, B. Recht, and L. Waller, “3D imaging in volumetric scattering media using phase-space measurements,” Opt. Express 23, 14461–14471 (2015).
[Crossref]

H. Yu, J. C. Park, K. R. Lee, J. H. Yoon, K. D. Kim, S. W. Lee, and Y. K. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Current Appl. Phys. 15, 632–641 (2015).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
[Crossref]

2014 (13)

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1, 227–232 (2014).
[Crossref]

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering medium,” Phys. Rev. Lett. 113, 263903 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 6800213 (2014).
[Crossref]

R. K. Singh, R. V. Vinu, and A. M. Sharma, “Recovery of complex valued objects from two-point intensity correlation measurement,” Appl. Phys. Lett. 104, 111108 (2014).
[Crossref]

R. K. Singh, A. M. Sharma, and B. Das, “Quantitative phase-contrast imaging through a scattering medium,” Opt. Lett. 39, 5054–5057 (2014).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1, 170–174 (2014).
[Crossref]

H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, Ji.-Y. Kim, and Y. K. Park, “Depth enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22, 7514–7523 (2014).
[Crossref]

X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22, 3405–3413 (2014).
[Crossref]

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14, 2499–2504 (2014).
[Crossref]

K. T. Takasaki and J. W. Fleischer, “Phase-space measurement for depth-resolved memory-effect imaging,” Opt. Express 22, 31426–31433 (2014).
[Crossref]

M. Takeda, W. Wang, D. N. Naik, and R. K. Singh, “Spatial statistical optics and spatial correlation holography: A Review,” Opt. Rev. 21, 849–861 (2014).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[Crossref]

2013 (3)

2012 (7)

A. P. Mosk, Ad. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

D. B. Cankey, A. N. Brown, A. M. Carvaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20, 4840–4849 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745–752 (2012).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, Ad. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time reversed ultrasound encoded light,” Nat. Commun. 3, 928–936 (2012).
[Crossref]

2011 (2)

X. Xu, H. Liu, and L. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

D. N. Naik, R. K. Singh, T. Ezawa, Y. Miyamoto, and M. Takeda, “Photon correlation holography,” Opt. Express 19, 1408–1421 (2011).
[Crossref]

2010 (4)

C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[Crossref]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81–84 (2010).
[Crossref]

2008 (1)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

2007 (1)

2001 (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
[Crossref]

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

1990 (1)

I. Freund, “Looking through walls and around corners,” Phys. A 168, 49–65 (1990).
[Crossref]

1983 (1)

1970 (1)

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

1968 (1)

1966 (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

1965 (1)

L. I. Goldfischer, “Autocorrelation function and power spectral density of laser produced speckle patterns,” J. Opt. Soc. Am 55, 247–253 (1965).
[Crossref]

Alfano, R. R.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

Balduzzi, D.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Bawendi, M.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745–752 (2012).
[Crossref]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, Ad. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Bianco, V.

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14, 2499–2504 (2014).
[Crossref]

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21, 23985–23996 (2013).
[Crossref]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, Ad. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81–84 (2010).
[Crossref]

Brown, A. N.

Cankey, D. B.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Carvaca-Aguirre, A. M.

Cho, Y. H.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Choi, W.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
[Crossref]

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
[Crossref]

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 6800213 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 6800213 (2014).
[Crossref]

Choi, Y.

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
[Crossref]

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 6800213 (2014).
[Crossref]

Dainty, J. C.

Das, B.

DiMarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time reversed ultrasound encoded light,” Nat. Commun. 3, 928–936 (2012).
[Crossref]

Ezawa, T.

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Ferraro, P.

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14, 2499–2504 (2014).
[Crossref]

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21, 23985–23996 (2013).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Finizio, A.

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21, 23985–23996 (2013).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

A. P. Mosk, Ad. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81–84 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Fleischer, J. W.

Freund, I.

I. Freund, “Looking through walls and around corners,” Phys. A 168, 49–65 (1990).
[Crossref]

Galli, A.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Gennari, O.

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14, 2499–2504 (2014).
[Crossref]

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21, 23985–23996 (2013).
[Crossref]

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81–84 (2010).
[Crossref]

Goldfischer, L. I.

L. I. Goldfischer, “Autocorrelation function and power spectral density of laser produced speckle patterns,” J. Opt. Soc. Am 55, 247–253 (1965).
[Crossref]

Goodman, J. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

J. W. Goodman, Statistical Optics (Wiley-Interscience, 2000).

J. W. Goodman, Introduction to Fourier Optics (Mc-Graw Hill, 1996).

J. W. Goodman, Speckle Phenomenon in Optics: Theory and Applications (Roberts & Co., 2007).

Grange, R.

Guan, Y.

Gupta, O.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745–752 (2012).
[Crossref]

Han, S.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Hariharan, P.

P. Hariharan, Optical Interferometry (Academic, 2003).

He, H.

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

Hsieh, C.-L.

Huntley, W. H.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Jackson, D. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Jang, J.

Jang, W.

Jeong, S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Jericho, M. H.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
[Crossref]

Jingshan, Z.

Jonas, E.

Joo, J. H.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Judkewitz, B.

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1, 227–232 (2014).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time reversed ultrasound encoded light,” Nat. Commun. 3, 928–936 (2012).
[Crossref]

Kang, S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1, 170–174 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

Kim, Ji.-Y.

Kim, K. D.

H. Yu, J. C. Park, K. R. Lee, J. H. Yoon, K. D. Kim, S. W. Lee, and Y. K. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Current Appl. Phys. 15, 632–641 (2015).
[Crossref]

Kim, M.

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
[Crossref]

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 6800213 (2014).
[Crossref]

Ko, H.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Ko, S. H.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Kogelnik, K.

Kreuzer, H. J.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
[Crossref]

Kumar, M.

Labeyrie, A.

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

Lagendijk, Ad.

J. Bertolotti, E. G. van Putten, C. Blum, Ad. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

A. P. Mosk, Ad. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Lakshminarayanan, V.

Laporte, G.

Lee, J.-S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Lee, K. R.

H. Yu, J. C. Park, K. R. Lee, J. H. Yoon, K. D. Kim, S. W. Lee, and Y. K. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Current Appl. Phys. 15, 632–641 (2015).
[Crossref]

Lee, S. W.

H. Yu, J. C. Park, K. R. Lee, J. H. Yoon, K. D. Kim, S. W. Lee, and Y. K. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Current Appl. Phys. 15, 632–641 (2015).
[Crossref]

Lehmann, M.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Lerosey, G.

A. P. Mosk, Ad. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81–84 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Lim, J.

Lim, Y.-S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

Liu, H.

H. Liu, E. Jonas, L. Tian, Z. Jingshan, B. Recht, and L. Waller, “3D imaging in volumetric scattering media using phase-space measurements,” Opt. Express 23, 14461–14471 (2015).
[Crossref]

X. Xu, H. Liu, and L. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
[Crossref]

Memmolo, P.

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14, 2499–2504 (2014).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Merola, F.

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14, 2499–2504 (2014).
[Crossref]

Miccio, L.

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14, 2499–2504 (2014).
[Crossref]

Miyamoto, Y.

D. N. Naik, R. K. Singh, T. Ezawa, Y. Miyamoto, and M. Takeda, “Photon correlation holography,” Opt. Express 19, 1408–1421 (2011).
[Crossref]

R. K. Singh, S. Vyas, and Y. Miyamoto, “Interference of coherence waves,” in Optics & Photonics International Congress, Yokohama, Japan (2016).

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, Ad. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

A. P. Mosk, Ad. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref]

Naik, D. N.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light: Sci. Appl. 6, e16219 (2017).
[Crossref]

M. Takeda, W. Wang, D. N. Naik, and R. K. Singh, “Spatial statistical optics and spatial correlation holography: A Review,” Opt. Rev. 21, 849–861 (2014).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[Crossref]

D. N. Naik, R. K. Singh, T. Ezawa, Y. Miyamoto, and M. Takeda, “Photon correlation holography,” Opt. Express 19, 1408–1421 (2011).
[Crossref]

Nam, K. T.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Netti, P. A.

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14, 2499–2504 (2014).
[Crossref]

Newman, D.

Newman, J. A.

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering medium,” Phys. Rev. Lett. 113, 263903 (2014).
[Crossref]

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

Osten, W.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light: Sci. Appl. 6, e16219 (2017).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[Crossref]

Park, C.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Park, J.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Park, J. C.

H. Yu, J. C. Park, K. R. Lee, J. H. Yoon, K. D. Kim, S. W. Lee, and Y. K. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Current Appl. Phys. 15, 632–641 (2015).
[Crossref]

Park, J. H.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Park, J.-H.

Park, Q.-H.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Park, Y. K.

H. Yu, J. C. Park, K. R. Lee, J. H. Yoon, K. D. Kim, S. W. Lee, and Y. K. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Current Appl. Phys. 15, 632–641 (2015).
[Crossref]

H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, Ji.-Y. Kim, and Y. K. Park, “Depth enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22, 7514–7523 (2014).
[Crossref]

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Paturzo, M.

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14, 2499–2504 (2014).
[Crossref]

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21, 23985–23996 (2013).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Pedrini, G.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light: Sci. Appl. 6, e16219 (2017).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[Crossref]

Pennington, K. S.

Piestun, R.

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81–84 (2010).
[Crossref]

Psaltis, D.

Pu, Y.

Puglisi, R.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Purcell, M. J.

Rand, S. C.

Raskar, R.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745–752 (2012).
[Crossref]

Recht, B.

Ruan, H.

Sharma, A. M.

R. K. Singh, A. M. Sharma, and B. Das, “Quantitative phase-contrast imaging through a scattering medium,” Opt. Lett. 39, 5054–5057 (2014).
[Crossref]

R. K. Singh, R. V. Vinu, and A. M. Sharma, “Recovery of complex valued objects from two-point intensity correlation measurement,” Appl. Phys. Lett. 104, 111108 (2014).
[Crossref]

Shin, J.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Silberberg, Y.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1, 170–174 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

Singh, A. K.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light: Sci. Appl. 6, e16219 (2017).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[Crossref]

Singh, R. K.

R. K. Singh, A. M. Sharma, and B. Das, “Quantitative phase-contrast imaging through a scattering medium,” Opt. Lett. 39, 5054–5057 (2014).
[Crossref]

R. K. Singh, R. V. Vinu, and A. M. Sharma, “Recovery of complex valued objects from two-point intensity correlation measurement,” Appl. Phys. Lett. 104, 111108 (2014).
[Crossref]

M. Takeda, W. Wang, D. N. Naik, and R. K. Singh, “Spatial statistical optics and spatial correlation holography: A Review,” Opt. Rev. 21, 849–861 (2014).
[Crossref]

D. N. Naik, R. K. Singh, T. Ezawa, Y. Miyamoto, and M. Takeda, “Photon correlation holography,” Opt. Express 19, 1408–1421 (2011).
[Crossref]

R. K. Singh, S. Vyas, and Y. Miyamoto, “Interference of coherence waves,” in Optics & Photonics International Congress, Yokohama, Japan (2016).

Small, E.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1, 170–174 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

Takasaki, K. T.

Takeda, M.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light: Sci. Appl. 6, e16219 (2017).
[Crossref]

M. Takeda, W. Wang, D. N. Naik, and R. K. Singh, “Spatial statistical optics and spatial correlation holography: A Review,” Opt. Rev. 21, 849–861 (2014).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[Crossref]

D. N. Naik, R. K. Singh, T. Ezawa, Y. Miyamoto, and M. Takeda, “Photon correlation holography,” Opt. Express 19, 1408–1421 (2011).
[Crossref]

Tian, L.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, Ad. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Veeraraghavan, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745–752 (2012).
[Crossref]

Vellekoop, I. M.

Velten, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745–752 (2012).
[Crossref]

Vinu, R. V.

R. K. Singh, R. V. Vinu, and A. M. Sharma, “Recovery of complex valued objects from two-point intensity correlation measurement,” Appl. Phys. Lett. 104, 111108 (2014).
[Crossref]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, Ad. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Vyas, S.

R. K. Singh, S. Vyas, and Y. Miyamoto, “Interference of coherence waves,” in Optics & Photonics International Congress, Yokohama, Japan (2016).

Waller, L.

Wang, L.

X. Xu, H. Liu, and L. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

Wang, W.

M. Takeda, W. Wang, D. N. Naik, and R. K. Singh, “Spatial statistical optics and spatial correlation holography: A Review,” Opt. Rev. 21, 849–861 (2014).
[Crossref]

Wang, Y. M.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time reversed ultrasound encoded light,” Nat. Commun. 3, 928–936 (2012).
[Crossref]

Webb, K. J.

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering medium,” Phys. Rev. Lett. 113, 263903 (2014).
[Crossref]

Weiner, A. M.

A. M. Weiner, Ultrafast Optics (Wiley, 2009).

Willwacher, T.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745–752 (2012).
[Crossref]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Xu, W.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
[Crossref]

Xu, X.

X. Xu, H. Liu, and L. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

Yang, C.

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1, 227–232 (2014).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time reversed ultrasound encoded light,” Nat. Commun. 3, 928–936 (2012).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Yang, T. D.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Yang, X.

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Yoon, C.

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
[Crossref]

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 6800213 (2014).
[Crossref]

Yoon, J. H.

H. Yu, J. C. Park, K. R. Lee, J. H. Yoon, K. D. Kim, S. W. Lee, and Y. K. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Current Appl. Phys. 15, 632–641 (2015).
[Crossref]

Yu, H.

H. Yu, J. C. Park, K. R. Lee, J. H. Yoon, K. D. Kim, S. W. Lee, and Y. K. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Current Appl. Phys. 15, 632–641 (2015).
[Crossref]

H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, Ji.-Y. Kim, and Y. K. Park, “Depth enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22, 7514–7523 (2014).
[Crossref]

Yu, H. S.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

Zhou, E. H.

Zhou, J.

Appl. Phys. Lett. (2)

R. K. Singh, R. V. Vinu, and A. M. Sharma, “Recovery of complex valued objects from two-point intensity correlation measurement,” Appl. Phys. Lett. 104, 111108 (2014).
[Crossref]

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Astron. Astrophys. (1)

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

Current Appl. Phys. (1)

H. Yu, J. C. Park, K. R. Lee, J. H. Yoon, K. D. Kim, S. W. Lee, and Y. K. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Current Appl. Phys. 15, 632–641 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 6800213 (2014).
[Crossref]

J. Opt. Soc. Am (1)

L. I. Goldfischer, “Autocorrelation function and power spectral density of laser produced speckle patterns,” J. Opt. Soc. Am 55, 247–253 (1965).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Lab Chip (2)

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14, 2499–2504 (2014).
[Crossref]

Light: Sci. Appl. (1)

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light: Sci. Appl. 6, e16219 (2017).
[Crossref]

Nat. Commun. (3)

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time reversed ultrasound encoded light,” Nat. Commun. 3, 928–936 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81–84 (2010).
[Crossref]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745–752 (2012).
[Crossref]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

Nat. Photonics (7)

A. P. Mosk, Ad. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

X. Xu, H. Liu, and L. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, Ad. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Opt. Express (11)

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21, 23985–23996 (2013).
[Crossref]

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
[Crossref]

H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21, 12539–12545 (2013).
[Crossref]

H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, Ji.-Y. Kim, and Y. K. Park, “Depth enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22, 7514–7523 (2014).
[Crossref]

X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22, 3405–3413 (2014).
[Crossref]

C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[Crossref]

D. B. Cankey, A. N. Brown, A. M. Carvaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20, 4840–4849 (2012).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[Crossref]

D. N. Naik, R. K. Singh, T. Ezawa, Y. Miyamoto, and M. Takeda, “Photon correlation holography,” Opt. Express 19, 1408–1421 (2011).
[Crossref]

K. T. Takasaki and J. W. Fleischer, “Phase-space measurement for depth-resolved memory-effect imaging,” Opt. Express 22, 31426–31433 (2014).
[Crossref]

H. Liu, E. Jonas, L. Tian, Z. Jingshan, B. Recht, and L. Waller, “3D imaging in volumetric scattering media using phase-space measurements,” Opt. Express 23, 14461–14471 (2015).
[Crossref]

Opt. Lett. (3)

Opt. Rev. (1)

M. Takeda, W. Wang, D. N. Naik, and R. K. Singh, “Spatial statistical optics and spatial correlation holography: A Review,” Opt. Rev. 21, 849–861 (2014).
[Crossref]

Optica (2)

Phys. A (1)

I. Freund, “Looking through walls and around corners,” Phys. A 168, 49–65 (1990).
[Crossref]

Phys. Rev. Lett. (2)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering medium,” Phys. Rev. Lett. 113, 263903 (2014).
[Crossref]

Proc. IEEE (1)

F. Merola, P. Memmolo, L. Miccio, V. Bianco, M. Paturzo, and P. Ferraro, “Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy,” Proc. IEEE 103, 192–204 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
[Crossref]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

Other (8)

J. W. Goodman, Speckle Phenomenon in Optics: Theory and Applications (Roberts & Co., 2007).

J. W. Goodman, Statistical Optics (Wiley-Interscience, 2000).

J. C. Dainty, Laser Speckle and Related Phenomenon (Springer, 1884).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

A. M. Weiner, Ultrafast Optics (Wiley, 2009).

J. W. Goodman, Introduction to Fourier Optics (Mc-Graw Hill, 1996).

R. K. Singh, S. Vyas, and Y. Miyamoto, “Interference of coherence waves,” in Optics & Photonics International Congress, Yokohama, Japan (2016).

P. Hariharan, Optical Interferometry (Academic, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematics of the proposed concept of imaging through a scattering layer. (a) Optical method used for imaging of an object situated behind a scattering medium. (b) The optical field at the scattering medium is considered to be an interference pattern due to an object and a reference beam. (c) Actual experimental setup. BS1, BS2, beam splitters; M1, M2, mirrors; L1-L5, lenses; GG1, GG2, ground glasses; MO, microscope objective; SLM, spatial light modulator; HWP, half-wave plate; PBS, polarizing beam splitter; CCD, charged-coupled device.
Fig. 2.
Fig. 2. Two sets of objects used for experimental validation, their Fourier holograms and CCD speckle images. (a) Letters “O” and “W” separated by a longitudinal distance of Δz=10  mm, (b) shapes “star” and “heart” with Δz=15  mm. (c) and (d) are numerically generated Fourier holograms of (a) and (b) displayed in the SLM. (e) and (f) are raw recorded CCD images for the Fourier holograms shown in (c) and (d), respectively. The color bars show normalized intensity.
Fig. 3.
Fig. 3. Imaging of amplitude and phase information through a scattering medium. (a) and (b) are reconstructed amplitude information of the two letters, (c) 3D representative diagram showing focusing of the two objects with depth separation of Δz=10  mm. Similarly, (d)–(f) are the reconstructed amplitude information for the shapes “star” and “heart” for Δz=15  mm, (g)–(j) are the reconstructed phase information for the two sets of objects. Color bars in (a), (b), (d), and (e) represent the normalized amplitude and in (g)–(j) represent phase in radians. The scale bar shown in (a) is of size 0.2 mm, and it is the same for (b), (d), and (e). Visibility (v) and reconstruction efficiency (η) values are shown just above the figures.
Fig. 4.
Fig. 4. Imaging amplitude and phase information without scattering medium. (a) and (b) are reconstructed amplitude information of the two letters, (c) 3D representative diagram showing focusing of the two objects with depth separation of Δz=10  mm. Similarly, (d)–(f) are the reconstructed amplitude information for the shapes “star” and “heart” for Δz=15  mm, (g)–(j) are the reconstructed phase information for the two sets of objects. Color bars in (a), (b), (d), and (e) represent the normalized amplitude and in (g)–(j) represent phase in radians. The scale bar shown in (a) is of size 0.2 mm and it is the same for (b), (d), and (e). Visibility (v) and reconstruction efficiency (η) values are shown just above the figures.
Fig. 5.
Fig. 5. Imaging letter “V” through a scattering medium. (a) Raw recorded speckle image for an off-axis hologram; (b) reconstructed amplitude information of the object at a distance 155 mm from the scattering medium and its defocused information at z=1500  mm from the object plane; (c) reconstructed phase information of the object at a distance 155 mm from the scattering medium and its defocused information at z=1500  mm from the object plane. Visibility (v) and reconstruction efficiency (η) values at the actual depth are provided in the text.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

U(r1)=|U(r1)|ei[ϕ(r1)+ψ(r1)],
U(r2)=U(r1)e(i2πλf  r2·r1)dr1,
W(Δr2)=U(r2)U*(r2+Δr2)s=U(r2)U*(r2+Δr2)dr2=I(r1)e(i2πλf  Δr2·  r1)dr1,
C(r2,r2+Δr2)=ΔI(r2)ΔI(r2+Δr2)s,
C(Δr2)|W(Δr2)|2,
|W˜(Δr2)|2=|W(Δr2)|2+|Wa(Δr2)|2+W(Δr2)Wa*(Δr2)+W*(Δr2)Wa(Δr2),

Metrics