Abstract

Architects and lighting designers have difficulty designing spaces that are accessible to those with low vision, since the complex nature of most architectural spaces requires a site-specific analysis of the visibility of mobility hazards and key landmarks needed for navigation. We describe a method that can be utilized in the architectural design process for simulating the effects of reduced acuity and contrast on visibility. The key contribution is the development of a way to parameterize the simulation using standard clinical measures of acuity and contrast sensitivity. While these measures are known to be imperfect predictors of visual function, they provide a way of characterizing general levels of visual performance that is familiar to both those working in low vision and our target end-users in the architectural and lighting-design communities. We validate the simulation using a letter-recognition task.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Structural modeling of contrast sensitivity in adulthood

Charles T. Scialfa, Donald W. Kline, and Philip K. Wood
J. Opt. Soc. Am. A 19(1) 158-165 (2002)

Effects of luminance and spatial noise on interferometric contrast sensitivity

Nancy J. Coletta and Vineeta Sharma
J. Opt. Soc. Am. A 12(10) 2244-2251 (1995)

Modeling the contrast-sensitivity functions of older adults

Ann Marie Rohaly and Cynthia Owsley
J. Opt. Soc. Am. A 10(7) 1591-1599 (1993)

References

  • View by:
  • |
  • |
  • |

  1. National Eye Institute, “Statistics and data,” 2016, https://nei.nih.gov/eyedata/ .
  2. R. Pararajasegaram, “Low vision care: the need to maximise visual potential,” Community Eye Health 17, 1–2 (2004).
  3. American Optometric Association and Illuminating Engineering Society, “Lighting your way to better vision,” paper IES CG-1-09.
  4. Illuminating Engineering Society, “Light + seniors: a vision for the future,” in IES Research Symposium I, March6–7, 2012.
  5. National Institute of Building Sciences, “Design guidelines for the visual environment,” 2015, https://c.ymcdn.com/sites/www.nibs.org/resource/resmgr/LVDC/LVDP_Guidelines_052815.pdf .
  6. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990).
    [Crossref]
  7. E. Peli, “Simulating normal and low vision,” in Vision Models for Target Detection and Recognition, E. Peli, ed. (World Scientific, 1995), Vol. 2, pp. 63–87.
  8. C. W. Tyler, “Is the illusory triangle physical or imaginary?” Perception 6, 603–604 (1977).
    [Crossref]
  9. M. W. Cannon, “Perceived contrast in the fovea and periphery,” J. Opt. Soc. Am. A 2, 1760–1768 (1985).
    [Crossref]
  10. M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. 252, 627–656 (1975).
    [Crossref]
  11. A. B. Watson and A. J. Ahumada, “A standard model for foveal detection of spatial contrast,” J. Vis. 5(6), 740 (2005).
    [Crossref]
  12. G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graphics 3, 291–306 (1997).
    [Crossref]
  13. D. G. Pelli and P. Bex, “Measuring contrast sensitivity,” Vis. Res. 90, 10–14 (2013).
    [Crossref]
  14. A. M. Rohaly and C. Owsley, “Modeling the contrast-sensitivity functions of older adults,” J. Opt. Soc. Am. A 10, 1591–1599 (1993).
    [Crossref]
  15. S. T. L. Chung and G. E. Legge, “Comparing the shape of contrast sensitivity functions for normal and low vision,” Invest. Ophthalmol Visual Sci. 57, 198–207 (2016).
    [Crossref]
  16. D. G. Pelli, J. G. Robson, and A. J. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin. Vis. Sci. 2, 187–199 (1988).
  17. P. G. J. Barten, “Formula for the contrast sensitivity of the human eye,” Proc. SPIE 5294, 231–238 (2004).
    [Crossref]
  18. M. Kwon and G. E. Legge, “Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision,” Vis. Res. 51, 1995–2007 (2011).
    [Crossref]
  19. G. E. Legge, G. S. Rubin, and A. Luebker, “Psychophysics of reading—V: the role of contrast in normal vision,” Vis. Res. 27, 1165–1177 (1987).
    [Crossref]
  20. A. B. Watson and A. J. Ahumada, “Letter identification and the neural image classifier,” J. Vis. 15(2), 15 (2015).
    [Crossref]
  21. J. J. McAnany, K. R. Alexander, J. I. Lim, and M. Shahidi, “Object frequency characteristics of visual acuity,” Invest. Ophthalmol. Visual Sci. 52, 9534–9538 (2011).
    [Crossref]
  22. F. Thorn and F. Schwartz, “Effects of dioptric blur on Snellen and grating acuity,” Optom. Vis. Sci. 67, 3–7 (1990).
    [Crossref]
  23. P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of sampled functions,” Theory Comput. 8, 415–428 (2012).
    [Crossref]
  24. WebAIM, “Visual disabilities: color-blindness,” 2013, http://webaim.org/articles/visual/colorblind .
  25. E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Morgan Kaufmann, 2010).
  26. G. W. Larson and R. Shakespeare, Rendering with Radiance: The Art and Science of Lighting Visualization (Booksurge LLC, 2007).
  27. W. B. Thompson, “Deva-filter source code,” https://github.com/visual-accessibility/deva-filter .
  28. J. Suk and M. Schiler, “Investigation of Evalglare software, daylight glare probability and high dynamic range imaging for daylight glare analysis,” Light. Res. Technol. 45, 450–463 (2013).
    [Crossref]
  29. J. Wienold, “Evalglare–a new RADIANCE-based tool to evaluate daylight glare in office spaces,” in 3rd International RADIANCE Workshop, October11, 2004.
  30. J. A. Ferwerda, S. N. Pattanaik, P. Shirley, and D. P. Greenberg, “A model of visual adaptation for realistic image synthesis,” in Proceedings of ACM SIGGRAPH (1996), pp. 249–258.
  31. P. Irawan, J. A. Ferwerda, and S. R. Marschner, “Perceptually based tone mapping of high dynamic range image streams,” in Proceedings of the 16th Eurographics Conference on Rendering Techniques (EGST) (2005), pp. 231–242.
  32. S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings ACM SIGGRAPH (2000), pp. 47–54.
  33. S.-H. Cheung and G. E. Legge, “Functional and cortical adaptations to central vision loss,” Visual Neurosci. 22, 187–201 (2005).
    [Crossref]

2016 (1)

S. T. L. Chung and G. E. Legge, “Comparing the shape of contrast sensitivity functions for normal and low vision,” Invest. Ophthalmol Visual Sci. 57, 198–207 (2016).
[Crossref]

2015 (1)

A. B. Watson and A. J. Ahumada, “Letter identification and the neural image classifier,” J. Vis. 15(2), 15 (2015).
[Crossref]

2013 (2)

D. G. Pelli and P. Bex, “Measuring contrast sensitivity,” Vis. Res. 90, 10–14 (2013).
[Crossref]

J. Suk and M. Schiler, “Investigation of Evalglare software, daylight glare probability and high dynamic range imaging for daylight glare analysis,” Light. Res. Technol. 45, 450–463 (2013).
[Crossref]

2012 (1)

P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of sampled functions,” Theory Comput. 8, 415–428 (2012).
[Crossref]

2011 (2)

J. J. McAnany, K. R. Alexander, J. I. Lim, and M. Shahidi, “Object frequency characteristics of visual acuity,” Invest. Ophthalmol. Visual Sci. 52, 9534–9538 (2011).
[Crossref]

M. Kwon and G. E. Legge, “Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision,” Vis. Res. 51, 1995–2007 (2011).
[Crossref]

2005 (2)

A. B. Watson and A. J. Ahumada, “A standard model for foveal detection of spatial contrast,” J. Vis. 5(6), 740 (2005).
[Crossref]

S.-H. Cheung and G. E. Legge, “Functional and cortical adaptations to central vision loss,” Visual Neurosci. 22, 187–201 (2005).
[Crossref]

2004 (2)

R. Pararajasegaram, “Low vision care: the need to maximise visual potential,” Community Eye Health 17, 1–2 (2004).

P. G. J. Barten, “Formula for the contrast sensitivity of the human eye,” Proc. SPIE 5294, 231–238 (2004).
[Crossref]

1997 (1)

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graphics 3, 291–306 (1997).
[Crossref]

1993 (1)

1990 (2)

E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990).
[Crossref]

F. Thorn and F. Schwartz, “Effects of dioptric blur on Snellen and grating acuity,” Optom. Vis. Sci. 67, 3–7 (1990).
[Crossref]

1988 (1)

D. G. Pelli, J. G. Robson, and A. J. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin. Vis. Sci. 2, 187–199 (1988).

1987 (1)

G. E. Legge, G. S. Rubin, and A. Luebker, “Psychophysics of reading—V: the role of contrast in normal vision,” Vis. Res. 27, 1165–1177 (1987).
[Crossref]

1985 (1)

1977 (1)

C. W. Tyler, “Is the illusory triangle physical or imaginary?” Perception 6, 603–604 (1977).
[Crossref]

1975 (1)

M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. 252, 627–656 (1975).
[Crossref]

Ahumada, A. J.

A. B. Watson and A. J. Ahumada, “Letter identification and the neural image classifier,” J. Vis. 15(2), 15 (2015).
[Crossref]

A. B. Watson and A. J. Ahumada, “A standard model for foveal detection of spatial contrast,” J. Vis. 5(6), 740 (2005).
[Crossref]

Alexander, K. R.

J. J. McAnany, K. R. Alexander, J. I. Lim, and M. Shahidi, “Object frequency characteristics of visual acuity,” Invest. Ophthalmol. Visual Sci. 52, 9534–9538 (2011).
[Crossref]

Barten, P. G. J.

P. G. J. Barten, “Formula for the contrast sensitivity of the human eye,” Proc. SPIE 5294, 231–238 (2004).
[Crossref]

Bex, P.

D. G. Pelli and P. Bex, “Measuring contrast sensitivity,” Vis. Res. 90, 10–14 (2013).
[Crossref]

Cannon, M. W.

Cheung, S.-H.

S.-H. Cheung and G. E. Legge, “Functional and cortical adaptations to central vision loss,” Visual Neurosci. 22, 187–201 (2005).
[Crossref]

Chung, S. T. L.

S. T. L. Chung and G. E. Legge, “Comparing the shape of contrast sensitivity functions for normal and low vision,” Invest. Ophthalmol Visual Sci. 57, 198–207 (2016).
[Crossref]

Debevec, P.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Morgan Kaufmann, 2010).

Felzenszwalb, P. F.

P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of sampled functions,” Theory Comput. 8, 415–428 (2012).
[Crossref]

Ferwerda, J. A.

P. Irawan, J. A. Ferwerda, and S. R. Marschner, “Perceptually based tone mapping of high dynamic range image streams,” in Proceedings of the 16th Eurographics Conference on Rendering Techniques (EGST) (2005), pp. 231–242.

J. A. Ferwerda, S. N. Pattanaik, P. Shirley, and D. P. Greenberg, “A model of visual adaptation for realistic image synthesis,” in Proceedings of ACM SIGGRAPH (1996), pp. 249–258.

Georgeson, M. A.

M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. 252, 627–656 (1975).
[Crossref]

Greenberg, D. P.

J. A. Ferwerda, S. N. Pattanaik, P. Shirley, and D. P. Greenberg, “A model of visual adaptation for realistic image synthesis,” in Proceedings of ACM SIGGRAPH (1996), pp. 249–258.

S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings ACM SIGGRAPH (2000), pp. 47–54.

Heidrich, W.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Morgan Kaufmann, 2010).

Huttenlocher, D. P.

P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of sampled functions,” Theory Comput. 8, 415–428 (2012).
[Crossref]

Irawan, P.

P. Irawan, J. A. Ferwerda, and S. R. Marschner, “Perceptually based tone mapping of high dynamic range image streams,” in Proceedings of the 16th Eurographics Conference on Rendering Techniques (EGST) (2005), pp. 231–242.

Kwon, M.

M. Kwon and G. E. Legge, “Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision,” Vis. Res. 51, 1995–2007 (2011).
[Crossref]

Larson, G. W.

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graphics 3, 291–306 (1997).
[Crossref]

G. W. Larson and R. Shakespeare, Rendering with Radiance: The Art and Science of Lighting Visualization (Booksurge LLC, 2007).

Legge, G. E.

S. T. L. Chung and G. E. Legge, “Comparing the shape of contrast sensitivity functions for normal and low vision,” Invest. Ophthalmol Visual Sci. 57, 198–207 (2016).
[Crossref]

M. Kwon and G. E. Legge, “Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision,” Vis. Res. 51, 1995–2007 (2011).
[Crossref]

S.-H. Cheung and G. E. Legge, “Functional and cortical adaptations to central vision loss,” Visual Neurosci. 22, 187–201 (2005).
[Crossref]

G. E. Legge, G. S. Rubin, and A. Luebker, “Psychophysics of reading—V: the role of contrast in normal vision,” Vis. Res. 27, 1165–1177 (1987).
[Crossref]

Lim, J. I.

J. J. McAnany, K. R. Alexander, J. I. Lim, and M. Shahidi, “Object frequency characteristics of visual acuity,” Invest. Ophthalmol. Visual Sci. 52, 9534–9538 (2011).
[Crossref]

Luebker, A.

G. E. Legge, G. S. Rubin, and A. Luebker, “Psychophysics of reading—V: the role of contrast in normal vision,” Vis. Res. 27, 1165–1177 (1987).
[Crossref]

Marschner, S. R.

P. Irawan, J. A. Ferwerda, and S. R. Marschner, “Perceptually based tone mapping of high dynamic range image streams,” in Proceedings of the 16th Eurographics Conference on Rendering Techniques (EGST) (2005), pp. 231–242.

McAnany, J. J.

J. J. McAnany, K. R. Alexander, J. I. Lim, and M. Shahidi, “Object frequency characteristics of visual acuity,” Invest. Ophthalmol. Visual Sci. 52, 9534–9538 (2011).
[Crossref]

Myszkowski, K.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Morgan Kaufmann, 2010).

Owsley, C.

Pararajasegaram, R.

R. Pararajasegaram, “Low vision care: the need to maximise visual potential,” Community Eye Health 17, 1–2 (2004).

Pattanaik, S.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Morgan Kaufmann, 2010).

Pattanaik, S. N.

S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings ACM SIGGRAPH (2000), pp. 47–54.

J. A. Ferwerda, S. N. Pattanaik, P. Shirley, and D. P. Greenberg, “A model of visual adaptation for realistic image synthesis,” in Proceedings of ACM SIGGRAPH (1996), pp. 249–258.

Peli, E.

E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990).
[Crossref]

E. Peli, “Simulating normal and low vision,” in Vision Models for Target Detection and Recognition, E. Peli, ed. (World Scientific, 1995), Vol. 2, pp. 63–87.

Pelli, D. G.

D. G. Pelli and P. Bex, “Measuring contrast sensitivity,” Vis. Res. 90, 10–14 (2013).
[Crossref]

D. G. Pelli, J. G. Robson, and A. J. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin. Vis. Sci. 2, 187–199 (1988).

Piatko, C.

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graphics 3, 291–306 (1997).
[Crossref]

Reinhard, E.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Morgan Kaufmann, 2010).

Robson, J. G.

D. G. Pelli, J. G. Robson, and A. J. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin. Vis. Sci. 2, 187–199 (1988).

Rohaly, A. M.

Rubin, G. S.

G. E. Legge, G. S. Rubin, and A. Luebker, “Psychophysics of reading—V: the role of contrast in normal vision,” Vis. Res. 27, 1165–1177 (1987).
[Crossref]

Rushmeier, H.

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graphics 3, 291–306 (1997).
[Crossref]

Schiler, M.

J. Suk and M. Schiler, “Investigation of Evalglare software, daylight glare probability and high dynamic range imaging for daylight glare analysis,” Light. Res. Technol. 45, 450–463 (2013).
[Crossref]

Schwartz, F.

F. Thorn and F. Schwartz, “Effects of dioptric blur on Snellen and grating acuity,” Optom. Vis. Sci. 67, 3–7 (1990).
[Crossref]

Shahidi, M.

J. J. McAnany, K. R. Alexander, J. I. Lim, and M. Shahidi, “Object frequency characteristics of visual acuity,” Invest. Ophthalmol. Visual Sci. 52, 9534–9538 (2011).
[Crossref]

Shakespeare, R.

G. W. Larson and R. Shakespeare, Rendering with Radiance: The Art and Science of Lighting Visualization (Booksurge LLC, 2007).

Shirley, P.

J. A. Ferwerda, S. N. Pattanaik, P. Shirley, and D. P. Greenberg, “A model of visual adaptation for realistic image synthesis,” in Proceedings of ACM SIGGRAPH (1996), pp. 249–258.

Suk, J.

J. Suk and M. Schiler, “Investigation of Evalglare software, daylight glare probability and high dynamic range imaging for daylight glare analysis,” Light. Res. Technol. 45, 450–463 (2013).
[Crossref]

Sullivan, G. D.

M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. 252, 627–656 (1975).
[Crossref]

Thorn, F.

F. Thorn and F. Schwartz, “Effects of dioptric blur on Snellen and grating acuity,” Optom. Vis. Sci. 67, 3–7 (1990).
[Crossref]

Tumblin, J.

S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings ACM SIGGRAPH (2000), pp. 47–54.

Tyler, C. W.

C. W. Tyler, “Is the illusory triangle physical or imaginary?” Perception 6, 603–604 (1977).
[Crossref]

Ward, G.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Morgan Kaufmann, 2010).

Watson, A. B.

A. B. Watson and A. J. Ahumada, “Letter identification and the neural image classifier,” J. Vis. 15(2), 15 (2015).
[Crossref]

A. B. Watson and A. J. Ahumada, “A standard model for foveal detection of spatial contrast,” J. Vis. 5(6), 740 (2005).
[Crossref]

Wienold, J.

J. Wienold, “Evalglare–a new RADIANCE-based tool to evaluate daylight glare in office spaces,” in 3rd International RADIANCE Workshop, October11, 2004.

Wilkins, A. J.

D. G. Pelli, J. G. Robson, and A. J. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin. Vis. Sci. 2, 187–199 (1988).

Yee, H.

S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings ACM SIGGRAPH (2000), pp. 47–54.

Clin. Vis. Sci. (1)

D. G. Pelli, J. G. Robson, and A. J. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin. Vis. Sci. 2, 187–199 (1988).

Community Eye Health (1)

R. Pararajasegaram, “Low vision care: the need to maximise visual potential,” Community Eye Health 17, 1–2 (2004).

IEEE Trans. Vis. Comput. Graphics (1)

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graphics 3, 291–306 (1997).
[Crossref]

Invest. Ophthalmol Visual Sci. (1)

S. T. L. Chung and G. E. Legge, “Comparing the shape of contrast sensitivity functions for normal and low vision,” Invest. Ophthalmol Visual Sci. 57, 198–207 (2016).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

J. J. McAnany, K. R. Alexander, J. I. Lim, and M. Shahidi, “Object frequency characteristics of visual acuity,” Invest. Ophthalmol. Visual Sci. 52, 9534–9538 (2011).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Physiol. (1)

M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. 252, 627–656 (1975).
[Crossref]

J. Vis. (2)

A. B. Watson and A. J. Ahumada, “A standard model for foveal detection of spatial contrast,” J. Vis. 5(6), 740 (2005).
[Crossref]

A. B. Watson and A. J. Ahumada, “Letter identification and the neural image classifier,” J. Vis. 15(2), 15 (2015).
[Crossref]

Light. Res. Technol. (1)

J. Suk and M. Schiler, “Investigation of Evalglare software, daylight glare probability and high dynamic range imaging for daylight glare analysis,” Light. Res. Technol. 45, 450–463 (2013).
[Crossref]

Optom. Vis. Sci. (1)

F. Thorn and F. Schwartz, “Effects of dioptric blur on Snellen and grating acuity,” Optom. Vis. Sci. 67, 3–7 (1990).
[Crossref]

Perception (1)

C. W. Tyler, “Is the illusory triangle physical or imaginary?” Perception 6, 603–604 (1977).
[Crossref]

Proc. SPIE (1)

P. G. J. Barten, “Formula for the contrast sensitivity of the human eye,” Proc. SPIE 5294, 231–238 (2004).
[Crossref]

Theory Comput. (1)

P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of sampled functions,” Theory Comput. 8, 415–428 (2012).
[Crossref]

Vis. Res. (3)

M. Kwon and G. E. Legge, “Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision,” Vis. Res. 51, 1995–2007 (2011).
[Crossref]

G. E. Legge, G. S. Rubin, and A. Luebker, “Psychophysics of reading—V: the role of contrast in normal vision,” Vis. Res. 27, 1165–1177 (1987).
[Crossref]

D. G. Pelli and P. Bex, “Measuring contrast sensitivity,” Vis. Res. 90, 10–14 (2013).
[Crossref]

Visual Neurosci. (1)

S.-H. Cheung and G. E. Legge, “Functional and cortical adaptations to central vision loss,” Visual Neurosci. 22, 187–201 (2005).
[Crossref]

Other (13)

WebAIM, “Visual disabilities: color-blindness,” 2013, http://webaim.org/articles/visual/colorblind .

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Morgan Kaufmann, 2010).

G. W. Larson and R. Shakespeare, Rendering with Radiance: The Art and Science of Lighting Visualization (Booksurge LLC, 2007).

W. B. Thompson, “Deva-filter source code,” https://github.com/visual-accessibility/deva-filter .

J. Wienold, “Evalglare–a new RADIANCE-based tool to evaluate daylight glare in office spaces,” in 3rd International RADIANCE Workshop, October11, 2004.

J. A. Ferwerda, S. N. Pattanaik, P. Shirley, and D. P. Greenberg, “A model of visual adaptation for realistic image synthesis,” in Proceedings of ACM SIGGRAPH (1996), pp. 249–258.

P. Irawan, J. A. Ferwerda, and S. R. Marschner, “Perceptually based tone mapping of high dynamic range image streams,” in Proceedings of the 16th Eurographics Conference on Rendering Techniques (EGST) (2005), pp. 231–242.

S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings ACM SIGGRAPH (2000), pp. 47–54.

National Eye Institute, “Statistics and data,” 2016, https://nei.nih.gov/eyedata/ .

E. Peli, “Simulating normal and low vision,” in Vision Models for Target Detection and Recognition, E. Peli, ed. (World Scientific, 1995), Vol. 2, pp. 63–87.

American Optometric Association and Illuminating Engineering Society, “Lighting your way to better vision,” paper IES CG-1-09.

Illuminating Engineering Society, “Light + seniors: a vision for the future,” in IES Research Symposium I, March6–7, 2012.

National Institute of Building Sciences, “Design guidelines for the visual environment,” 2015, https://c.ymcdn.com/sites/www.nibs.org/resource/resmgr/LVDC/LVDP_Guidelines_052815.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Chung and Legge [15] CSF is an asymmetric parabola when plotted in f l S l space. The plotted values show two instances of the CSF, one shifted left (lower acuity) and down (lower contrast sensitivity) compared to the other.

Fig. 2.
Fig. 2.

(a) Contrast sensitivity plots for different peak contrast sensitivities, but the same peak contrast sensitivity frequencies; (b) contrast sensitivity plots for different peak contrast sensitivities, but the same acuity as measured by cutoff frequency.

Fig. 3.
Fig. 3.

CSF cutoff frequency as a function of peak contrast sensitivity for a peak contrast sensitivity frequency corresponding to normal vision.

Fig. 4.
Fig. 4.

Screenshots of two stimuli used to evaluate the setting of F P N . (a) shows logMAR 1.3-sized characters, filtered to simulate an acuity of logMAR 1.2; (b) shows logMAR 1.1-sized characters, filtered to simulate an acuity of logMAR 1.2. Letters in (a) are readily recognizable, while those in (b) are not. ( F P N = 0.915    cycles / deg for both examples.)

Fig. 5.
Fig. 5.

Empirically determined acuity for simulated low vision with F P N = 0.915    cycles / deg .

Fig. 6.
Fig. 6.

Empirically determined smallest legible characters for reduced acuity and contrast sensitivity.

Fig. 7.
Fig. 7.

Empirically determined contrast sensitivity for simulated normal vision.

Fig. 8.
Fig. 8.

(a) Original logMAR chart, with third line from top corresponding to logMAR 1.1 and the fourth line from the top corresponding to logMAR 0.9. For correct character size, view the chart from a distance equivalent to 3.33 times the width of the chart image. (b) Original logMAR chart, filtered to simulate an acuity of logMAR 1.0. The third line is readable; the fourth line is not.

Fig. 9.
Fig. 9.

(a) Vertical bars of same width with two different contrasts with respect to the background; (b) low-vision simulation using thresholding in [6]; (c) low-vision simulation using improved thresholding.

Fig. 10.
Fig. 10.

(a) Luminance profile of Fig. 9(a); (b) plot of one of the bands produced by the low-vision simulation filter; (c) [6] style thresholding of band; (d) improved thresholding of band.

Fig. 11.
Fig. 11.

Examples of simulated loss of acuity and contrast sensitivity for a RADIANCE model of a Washington, D.C., Metro station (left column) and the model modified to provide improved lighting (right column).

Tables (1)

Tables Icon

Table 1. Predicted and Actual Smallest Legible Characters for Reduced Acuity and Contrast Sensitivity

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

S l ( f l ) = { S P l ( f l F P l ) 2 w L 2 if    f < F P S P l ( f l F P l ) 2 w H 2 if    f F P ,
S l ( f l ) = { S P N l + log 10 c ( f l F P N l log 10 a ) 2 w L 2 if    f < a × F P N S P N l + log 10 c ( f l F P N l log 10 a ) 2 w H 2 if    f a × F P N ,
C w = L b L c L b ,
P R = log 10 C T w ,
c = S P L S P N ,
C m = L b L c L b + L c = C w 2 C w ,
S P L = 1 C T m = 2 exp 10 ( P R ) exp 10 ( P R ) ,
S P N = 199 ,
c = 2 exp 10 ( P R ) 199 · exp 10 ( P R ) .
F C l = F P N l + log 10 ( a ) + ( log 10 ( c ) + S P N l ) 1 2 w H ,
S P N l + log 10 c ( F P l F C l ) 2 w H 2 = 0
F P l = F C l ( log 10 ( c ) + S P N l ) 1 2 w H .
F C R = Snellen _ value × F C N ,
a = F P R F P N .