Abstract

We quantitatively determine the target detection performance of different passive polarization imaging architectures perturbed by signal-independent detection noise or signal-dependent Poisson shot noise. We compare the fully adaptive polarimetric imager and the best channel of a static polarimetric imager, and in each case, we compare the use of a polarizer and a polarizing beam splitter as the polarization analyzing device. For all these configurations, we derive a closed-form expression of the target/background separability and quantify the performance gain brought by polarization imaging compared to standard intensity imaging. We show in particular that all the considered polarimetric imaging configurations but one require a minimum value of the polarimetric contrast in order to outperform intensity imaging. The only configuration that always performs better than intensity imaging uses a polarizing beam splitter in the presence of background shot noise. These results are useful in evaluating the fundamental limits of the gain brought by polarization imaging and determining, in practice, which type of imaging architecture is preferable for a given application.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimal configuration of static polarization imagers for target detection

François Goudail and Matthieu Boffety
J. Opt. Soc. Am. A 33(1) 9-16 (2016)

When is polarimetric imaging preferable to intensity imaging for target detection?

François Goudail and J. Scott Tyo
J. Opt. Soc. Am. A 28(1) 46-53 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription