Abstract

Accuracy of Kirchhoff approximation (KA) for rough-surface electromagnetic wave scattering is studied by comparison with accurate numerical solutions in the context of three-dimensional dielectric surfaces. The Kirchhoff tangent plane approximation is examined without resorting to the principle of stationary phase. In particular, it is shown that this additional assumption leads to zero cross-polarized backscattered power, but not the tangent plane approximation itself. Extensive numerical results in the case of a bisinusoidal surface are presented for a wide range of problem parameters: height-to-period, wavelength, incidence angles, and dielectric constants. In particular, this paper shows that the range of validity inherent in the KA includes surfaces whose curvature is not only much smaller, but also comparable to the incident wavelength, with errors smaller than 5% in total reflectivity, thus presenting a detailed and reliable source for the validity of the KA in a three-dimensional fully polarimetric formulation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A fast and high-order accurate surface perturbation method for nanoplasmonic simulations: basic concepts, analytic continuation and applications

Fernando Reitich, Timothy W. Johnson, Sang-Hyun Oh, and Gary Meyer
J. Opt. Soc. Am. A 30(11) 2175-2187 (2013)

Experimental light-scattering measurements from large-scale composite randomly rough surfaces

Víctor A. Ruiz-Cortés and J. C. Dainty
J. Opt. Soc. Am. A 19(10) 2043-2052 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription