Abstract

The effectiveness of reconstructive imaging using the homogeneous transport of intensity equation may be regarded as “unreasonable,” because it has been shown to significantly increase signal-to-noise ratio while preserving spatial resolution, compared to equivalent conventional absorption-based imaging techniques at the same photon fluence. We reconcile this surprising behavior by analyzing the propagation of noise in typical in-line holography experiments. This analysis indicates that novel imaging techniques may be designed that produce high signal-to-noise images at low radiation doses without sacrificing spatial resolution.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Duality between noise and spatial resolution in linear systems

Timur E. Gureyev, Yakov I. Nesterets, Frank de Hoog, Gerd Schmalz, Sheridan C. Mayo, Sara Mohammadi, and Giuliana Tromba
Opt. Express 22(8) 9087-9094 (2014)

Spatial resolution, signal-to-noise and information capacity of linear imaging systems

Timur Gureyev, Yakov Nesterets, and Frank de Hoog
Opt. Express 24(15) 17168-17182 (2016)

Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging

Timur E. Gureyev, Yakov I. Nesterets, Andrew W. Stevenson, Peter R. Miller, Andrew Pogany, and Stephen W. Wilkins
Opt. Express 16(5) 3223-3241 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “Light and information,” Prog. Opt. 1, 109–153 (1961).
    [Crossref]
  2. P. B. Felgett and E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
    [Crossref]
  3. I. J. Cox and C. J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3, 1152–1158 (1986).
    [Crossref]
  4. M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
    [Crossref]
  5. T. Gureyev, Y. Nesterets, and F. de Hoog, “Spatial resolution, signal-to-noise and information capacity of linear imaging systems,” Opt. Express 24, 17168–17182 (2016).
    [Crossref]
  6. T. E. Gureyev, Y. I. Nesterets, F. de Hoog, G. Schmalz, S. C. Mayo, S. Mohammadi, and G. Tromba, “Duality between noise and spatial resolution in linear systems,” Opt. Express 22, 9087–9094 (2014).
    [Crossref]
  7. T. E. Gureyev, A. Kozlov, Y. I. Nesterets, D. M. Paganin, and H. M. Quiney, “On noise-resolution uncertainty in quantum field theory,” Sci. Rep. 7, 4542 (2017).
    [Crossref]
  8. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
    [Crossref]
  9. Y. I. Nesterets and T. E. Gureyev, “Noise propagation in x-ray phase-contrast imaging and computed tomography,” J. Phys. D 47, 105402 (2014).
    [Crossref]
  10. M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N. Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, “CT dose reduction factors in the thousands using X-ray phase contrast,” arXiv:1704.03556 (2017).
  11. T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16, 3223–3241 (2008).
    [Crossref]
  12. B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
    [Crossref]
  13. J. W. Goodman, Statistical Optics (Wiley, 1985).
  14. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  15. R. Hanbury Brown and R. Q. Twiss, “Interferometry of the intensity fluctuations in light II. An experimental test of the theory for partially coherent light,” Proc. R. Soc. London A 243, 291–319 (1958).
    [Crossref]
  16. G. Baym, “The physics of Hanbury Brown-Twiss intensity interferometry: from stars to nuclear collisions,” Acta Phys. Pol. 29, 1839–1884 (1998).
  17. A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
    [Crossref]
  18. O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
    [Crossref]
  19. H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
    [Crossref]
  20. D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
    [Crossref]
  21. T. Shirai, “Modern aspects of intensity interferometry with classical light,” Prog. Opt. 62, 1–72 (2017).
    [Crossref]
  22. A. Schori and S. Shwartz, “X-ray ghost imaging with a laboratory source,” Opt. Express 25, 14822–14828 (2017).
    [Crossref]
  23. T. E. Gureyev, A. Kozlov, D. M. Paganin, Y. I. Nesterets, F. De Hoog, and H. M. Quiney, “On the van Cittert-Zernike theorem for intensity correlations and its applications,” J. Opt. Soc. Am A 34, 1577–1584 (2017).
  24. L. Mandel, “Concept of cross-spectral purity in coherence theory,” J. Opt. Soc. Am. A 51, 1342–1350 (1961).
    [Crossref]
  25. L. Mandel and E. Wolf, “The measures of bandwidth and coherence time in optics,” Proc. Phys. Soc. London 80, 894–897 (1962).
    [Crossref]
  26. T. E. Gureyev, Y. I. Nesterets, D. M. Paganin, A. Pogany, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination,” Opt. Commun. 259, 569–580 (2006).
    [Crossref]
  27. H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London A 217, 408–432 (1953).
    [Crossref]
  28. A. Classen, K. Ayyer, H. Chapman, R. Rohlsberger, and J. von Zanthier, “Incoherent diffractive imaging via intensity correlations of hard X-rays,” arXiv:1705.08677 (2017).
  29. Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
    [Crossref]
  30. T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
    [Crossref]
  31. P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
    [Crossref]
  32. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).
  33. D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
    [Crossref]
  34. D. Briedis, K. K. W. Siu, D. M. Paganin, K. M. Pavlov, and R. A. Lewis, “Analyser-based mammography using single-image reconstruction,” Phys. Med. Biol. 50, 3599–3611 (2005).
    [Crossref]
  35. D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraublich, O. Wehrhan, I. Uschmann, and E. Forster, “Analyzer-based phase-contrast imaging and phase retrieval using a rotating anode X-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
    [Crossref]
  36. K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D 37, 2746–2750 (2004).
    [Crossref]
  37. P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
    [Crossref]
  38. D. M. Paganin and T. E. Gureyev, “Phase contrast, phase retrieval and aberration balancing in shift-invariant linear imaging systems,” Opt. Commun. 281, 965–981 (2008).
    [Crossref]
  39. T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, and S. W. Wilkins, “A method for local deconvolution,” Appl. Opt. 42, 6488–6494 (2003).
    [Crossref]
  40. T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
    [Crossref]

2017 (6)

T. E. Gureyev, A. Kozlov, Y. I. Nesterets, D. M. Paganin, and H. M. Quiney, “On noise-resolution uncertainty in quantum field theory,” Sci. Rep. 7, 4542 (2017).
[Crossref]

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

T. Shirai, “Modern aspects of intensity interferometry with classical light,” Prog. Opt. 62, 1–72 (2017).
[Crossref]

T. E. Gureyev, A. Kozlov, D. M. Paganin, Y. I. Nesterets, F. De Hoog, and H. M. Quiney, “On the van Cittert-Zernike theorem for intensity correlations and its applications,” J. Opt. Soc. Am A 34, 1577–1584 (2017).

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

A. Schori and S. Shwartz, “X-ray ghost imaging with a laboratory source,” Opt. Express 25, 14822–14828 (2017).
[Crossref]

2016 (3)

T. Gureyev, Y. Nesterets, and F. de Hoog, “Spatial resolution, signal-to-noise and information capacity of linear imaging systems,” Opt. Express 24, 17168–17182 (2016).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

2015 (2)

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

2014 (3)

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, F. de Hoog, G. Schmalz, S. C. Mayo, S. Mohammadi, and G. Tromba, “Duality between noise and spatial resolution in linear systems,” Opt. Express 22, 9087–9094 (2014).
[Crossref]

Y. I. Nesterets and T. E. Gureyev, “Noise propagation in x-ray phase-contrast imaging and computed tomography,” J. Phys. D 47, 105402 (2014).
[Crossref]

2013 (1)

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

2009 (1)

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

2008 (2)

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16, 3223–3241 (2008).
[Crossref]

D. M. Paganin and T. E. Gureyev, “Phase contrast, phase retrieval and aberration balancing in shift-invariant linear imaging systems,” Opt. Commun. 281, 965–981 (2008).
[Crossref]

2007 (1)

D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraublich, O. Wehrhan, I. Uschmann, and E. Forster, “Analyzer-based phase-contrast imaging and phase retrieval using a rotating anode X-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

2006 (1)

T. E. Gureyev, Y. I. Nesterets, D. M. Paganin, A. Pogany, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination,” Opt. Commun. 259, 569–580 (2006).
[Crossref]

2005 (1)

D. Briedis, K. K. W. Siu, D. M. Paganin, K. M. Pavlov, and R. A. Lewis, “Analyser-based mammography using single-image reconstruction,” Phys. Med. Biol. 50, 3599–3611 (2005).
[Crossref]

2004 (3)

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D 37, 2746–2750 (2004).
[Crossref]

T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
[Crossref]

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

2003 (1)

2002 (1)

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

2000 (1)

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

1998 (1)

G. Baym, “The physics of Hanbury Brown-Twiss intensity interferometry: from stars to nuclear collisions,” Acta Phys. Pol. 29, 1839–1884 (1998).

1986 (1)

1962 (1)

L. Mandel and E. Wolf, “The measures of bandwidth and coherence time in optics,” Proc. Phys. Soc. London 80, 894–897 (1962).
[Crossref]

1961 (2)

L. Mandel, “Concept of cross-spectral purity in coherence theory,” J. Opt. Soc. Am. A 51, 1342–1350 (1961).
[Crossref]

D. Gabor, “Light and information,” Prog. Opt. 1, 109–153 (1961).
[Crossref]

1958 (1)

R. Hanbury Brown and R. Q. Twiss, “Interferometry of the intensity fluctuations in light II. An experimental test of the theory for partially coherent light,” Proc. R. Soc. London A 243, 291–319 (1958).
[Crossref]

1955 (1)

P. B. Felgett and E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
[Crossref]

1953 (1)

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London A 217, 408–432 (1953).
[Crossref]

Abouraddy, A. F.

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Andres-Thio, N.

M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N. Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, “CT dose reduction factors in the thousands using X-ray phase contrast,” arXiv:1704.03556 (2017).

Arfelli, F.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

Ayyer, K.

A. Classen, K. Ayyer, H. Chapman, R. Rohlsberger, and J. von Zanthier, “Incoherent diffractive imaging via intensity correlations of hard X-rays,” arXiv:1705.08677 (2017).

Baran, P.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Barrett, H. H.

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).

Baym, G.

G. Baym, “The physics of Hanbury Brown-Twiss intensity interferometry: from stars to nuclear collisions,” Acta Phys. Pol. 29, 1839–1884 (1998).

Beetz, T.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Bravine, A.

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

Brennan, P. C.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Brenner, G.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

Briedis, D.

D. Briedis, K. K. W. Siu, D. M. Paganin, K. M. Pavlov, and R. A. Lewis, “Analyser-based mammography using single-image reconstruction,” Phys. Med. Biol. 50, 3599–3611 (2005).
[Crossref]

Brown, J.

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

Brun, E.

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

Brun, F.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

Buckley, G. A.

M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N. Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, “CT dose reduction factors in the thousands using X-ray phase contrast,” arXiv:1704.03556 (2017).

Cantelli, V.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Chapman, H.

A. Classen, K. Ayyer, H. Chapman, R. Rohlsberger, and J. von Zanthier, “Incoherent diffractive imaging via intensity correlations of hard X-rays,” arXiv:1705.08677 (2017).

Chapman, H. N.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Cholewa, M.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Classen, A.

A. Classen, K. Ayyer, H. Chapman, R. Rohlsberger, and J. von Zanthier, “Incoherent diffractive imaging via intensity correlations of hard X-rays,” arXiv:1705.08677 (2017).

Coan, P.

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

Cox, I. J.

Cui, C.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

De Hoog, F.

Diemoz, P. C.

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

Dimmock, M.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Dreossi, D.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Dronyak, R.

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Du, G.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Dullin, C.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

Dzhigaev, D.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

Endrizzi, M.

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

Felgett, P. B.

P. B. Felgett and E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
[Crossref]

Forster, E.

D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraublich, O. Wehrhan, I. Uschmann, and E. Forster, “Analyzer-based phase-contrast imaging and phase retrieval using a rotating anode X-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

Gabor, D.

D. Gabor, “Light and information,” Prog. Opt. 1, 109–153 (1961).
[Crossref]

Gerasimova, N.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985).

Gorobtsov, O. Yu.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

Gulden, J.

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Gureyev, T.

T. Gureyev, Y. Nesterets, and F. de Hoog, “Spatial resolution, signal-to-noise and information capacity of linear imaging systems,” Opt. Express 24, 17168–17182 (2016).
[Crossref]

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

Gureyev, T. E.

T. E. Gureyev, A. Kozlov, D. M. Paganin, Y. I. Nesterets, F. De Hoog, and H. M. Quiney, “On the van Cittert-Zernike theorem for intensity correlations and its applications,” J. Opt. Soc. Am A 34, 1577–1584 (2017).

T. E. Gureyev, A. Kozlov, Y. I. Nesterets, D. M. Paganin, and H. M. Quiney, “On noise-resolution uncertainty in quantum field theory,” Sci. Rep. 7, 4542 (2017).
[Crossref]

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, F. de Hoog, G. Schmalz, S. C. Mayo, S. Mohammadi, and G. Tromba, “Duality between noise and spatial resolution in linear systems,” Opt. Express 22, 9087–9094 (2014).
[Crossref]

Y. I. Nesterets and T. E. Gureyev, “Noise propagation in x-ray phase-contrast imaging and computed tomography,” J. Phys. D 47, 105402 (2014).
[Crossref]

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16, 3223–3241 (2008).
[Crossref]

D. M. Paganin and T. E. Gureyev, “Phase contrast, phase retrieval and aberration balancing in shift-invariant linear imaging systems,” Opt. Commun. 281, 965–981 (2008).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, D. M. Paganin, A. Pogany, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination,” Opt. Commun. 259, 569–580 (2006).
[Crossref]

T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
[Crossref]

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D 37, 2746–2750 (2004).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, and S. W. Wilkins, “A method for local deconvolution,” Appl. Opt. 42, 6488–6494 (2003).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N. Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, “CT dose reduction factors in the thousands using X-ray phase contrast,” arXiv:1704.03556 (2017).

Hagen, C. K.

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

Hall, C.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Han, S.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Hanbury Brown, R.

R. Hanbury Brown and R. Q. Twiss, “Interferometry of the intensity fluctuations in light II. An experimental test of the theory for partially coherent light,” Proc. R. Soc. London A 243, 291–319 (1958).
[Crossref]

Hieke, F.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

Holton, J. M.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Hooper, S. B.

M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N. Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, “CT dose reduction factors in the thousands using X-ray phase contrast,” arXiv:1704.03556 (2017).

Hopkins, H. H.

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London A 217, 408–432 (1953).
[Crossref]

Howells, M. R.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Jacobsen, C. J.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Kirz, J.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Kitchen, M.

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

Kitchen, M. J.

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N. Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, “CT dose reduction factors in the thousands using X-ray phase contrast,” arXiv:1704.03556 (2017).

Kocharyan, V.

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Kozlov, A.

T. E. Gureyev, A. Kozlov, Y. I. Nesterets, D. M. Paganin, and H. M. Quiney, “On noise-resolution uncertainty in quantum field theory,” Sci. Rep. 7, 4542 (2017).
[Crossref]

T. E. Gureyev, A. Kozlov, D. M. Paganin, Y. I. Nesterets, F. De Hoog, and H. M. Quiney, “On the van Cittert-Zernike theorem for intensity correlations and its applications,” J. Opt. Soc. Am A 34, 1577–1584 (2017).

Kraublich, J.

D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraublich, O. Wehrhan, I. Uschmann, and E. Forster, “Analyzer-based phase-contrast imaging and phase retrieval using a rotating anode X-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

Kurta, R. P.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Lazarev, S.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

Lewis, R. A.

D. Briedis, K. K. W. Siu, D. M. Paganin, K. M. Pavlov, and R. A. Lewis, “Analyser-based mammography using single-image reconstruction,” Phys. Med. Biol. 50, 3599–3611 (2005).
[Crossref]

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D 37, 2746–2750 (2004).
[Crossref]

Lima, E.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Linfoot, E. H.

P. B. Felgett and E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
[Crossref]

Lockie, D.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

Lorenz, U.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Lu, R.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, “The measures of bandwidth and coherence time in optics,” Proc. Phys. Soc. London 80, 894–897 (1962).
[Crossref]

L. Mandel, “Concept of cross-spectral purity in coherence theory,” J. Opt. Soc. Am. A 51, 1342–1350 (1961).
[Crossref]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Marchesini, S.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Mayo, S.

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

Mayo, S. C.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, F. de Hoog, G. Schmalz, S. C. Mayo, S. Mohammadi, and G. Tromba, “Duality between noise and spatial resolution in linear systems,” Opt. Express 22, 9087–9094 (2014).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

McCormack, M.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Menk, R. H.

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

Mercurio, G.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

Miao, H.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Miller, P. R.

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16, 3223–3241 (2008).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

Mohammadi, S.

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, F. de Hoog, G. Schmalz, S. C. Mayo, S. Mohammadi, and G. Tromba, “Duality between noise and spatial resolution in linear systems,” Opt. Express 22, 9087–9094 (2014).
[Crossref]

Morgan, M. J.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D 37, 2746–2750 (2004).
[Crossref]

Myers, K. J.

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).

Nesterets, Y.

T. Gureyev, Y. Nesterets, and F. de Hoog, “Spatial resolution, signal-to-noise and information capacity of linear imaging systems,” Opt. Express 24, 17168–17182 (2016).
[Crossref]

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

Nesterets, Y. I.

T. E. Gureyev, A. Kozlov, D. M. Paganin, Y. I. Nesterets, F. De Hoog, and H. M. Quiney, “On the van Cittert-Zernike theorem for intensity correlations and its applications,” J. Opt. Soc. Am A 34, 1577–1584 (2017).

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

T. E. Gureyev, A. Kozlov, Y. I. Nesterets, D. M. Paganin, and H. M. Quiney, “On noise-resolution uncertainty in quantum field theory,” Sci. Rep. 7, 4542 (2017).
[Crossref]

Y. I. Nesterets and T. E. Gureyev, “Noise propagation in x-ray phase-contrast imaging and computed tomography,” J. Phys. D 47, 105402 (2014).
[Crossref]

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, F. de Hoog, G. Schmalz, S. C. Mayo, S. Mohammadi, and G. Tromba, “Duality between noise and spatial resolution in linear systems,” Opt. Express 22, 9087–9094 (2014).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16, 3223–3241 (2008).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, D. M. Paganin, A. Pogany, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination,” Opt. Commun. 259, 569–580 (2006).
[Crossref]

T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
[Crossref]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D 37, 2746–2750 (2004).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, and S. W. Wilkins, “A method for local deconvolution,” Appl. Opt. 42, 6488–6494 (2003).
[Crossref]

Nickson, C.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Olivoa, A.

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

Pacile, S.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Paganin, D.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D 37, 2746–2750 (2004).
[Crossref]

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

Paganin, D. M.

T. E. Gureyev, A. Kozlov, Y. I. Nesterets, D. M. Paganin, and H. M. Quiney, “On noise-resolution uncertainty in quantum field theory,” Sci. Rep. 7, 4542 (2017).
[Crossref]

T. E. Gureyev, A. Kozlov, D. M. Paganin, Y. I. Nesterets, F. De Hoog, and H. M. Quiney, “On the van Cittert-Zernike theorem for intensity correlations and its applications,” J. Opt. Soc. Am A 34, 1577–1584 (2017).

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

D. M. Paganin and T. E. Gureyev, “Phase contrast, phase retrieval and aberration balancing in shift-invariant linear imaging systems,” Opt. Commun. 281, 965–981 (2008).
[Crossref]

D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraublich, O. Wehrhan, I. Uschmann, and E. Forster, “Analyzer-based phase-contrast imaging and phase retrieval using a rotating anode X-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, D. M. Paganin, A. Pogany, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination,” Opt. Commun. 259, 569–580 (2006).
[Crossref]

D. Briedis, K. K. W. Siu, D. M. Paganin, K. M. Pavlov, and R. A. Lewis, “Analyser-based mammography using single-image reconstruction,” Phys. Med. Biol. 50, 3599–3611 (2005).
[Crossref]

Pavlov, K.

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

Pavlov, K. M.

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraublich, O. Wehrhan, I. Uschmann, and E. Forster, “Analyzer-based phase-contrast imaging and phase retrieval using a rotating anode X-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

D. Briedis, K. K. W. Siu, D. M. Paganin, K. M. Pavlov, and R. A. Lewis, “Analyser-based mammography using single-image reconstruction,” Phys. Med. Biol. 50, 3599–3611 (2005).
[Crossref]

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D 37, 2746–2750 (2004).
[Crossref]

Pelliccia, D.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Pinamonti, M.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Pogany, A.

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16, 3223–3241 (2008).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, D. M. Paganin, A. Pogany, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination,” Opt. Commun. 259, 569–580 (2006).
[Crossref]

Quiney, H.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Quiney, H. M.

T. E. Gureyev, A. Kozlov, D. M. Paganin, Y. I. Nesterets, F. De Hoog, and H. M. Quiney, “On the van Cittert-Zernike theorem for intensity correlations and its applications,” J. Opt. Soc. Am A 34, 1577–1584 (2017).

T. E. Gureyev, A. Kozlov, Y. I. Nesterets, D. M. Paganin, and H. M. Quiney, “On noise-resolution uncertainty in quantum field theory,” Sci. Rep. 7, 4542 (2017).
[Crossref]

Rack, A.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Rau, C.

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

Robinson, I. K.

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

Rohlsberger, R.

A. Classen, K. Ayyer, H. Chapman, R. Rohlsberger, and J. von Zanthier, “Incoherent diffractive imaging via intensity correlations of hard X-rays,” arXiv:1705.08677 (2017).

Rose, M.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Sayre, D.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Scheel, M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Schmalz, G.

Schori, A.

Sergienko, A. V.

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Shabalin, A.

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Shapiro, D. A.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Sheppard, C. J. R.

Shirai, T.

T. Shirai, “Modern aspects of intensity interferometry with classical light,” Prog. Opt. 62, 1–72 (2017).
[Crossref]

Shwartz, S.

Singer, A.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Siu, K. K. W.

D. Briedis, K. K. W. Siu, D. M. Paganin, K. M. Pavlov, and R. A. Lewis, “Analyser-based mammography using single-image reconstruction,” Phys. Med. Biol. 50, 3599–3611 (2005).
[Crossref]

Skopintsev, P.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

Sorgenfrei, F.

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Spence, J. C. H.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Starodub, D.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

Stevenson, A.

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

Stevenson, A. W.

Taba, S. T.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Teich, M. C.

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Thompson, D.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

Treusch, R.

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Tromba, G.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, F. de Hoog, G. Schmalz, S. C. Mayo, S. Mohammadi, and G. Tromba, “Duality between noise and spatial resolution in linear systems,” Opt. Express 22, 9087–9094 (2014).
[Crossref]

Twiss, R. Q.

R. Hanbury Brown and R. Q. Twiss, “Interferometry of the intensity fluctuations in light II. An experimental test of the theory for partially coherent light,” Proc. R. Soc. London A 243, 291–319 (1958).
[Crossref]

Uesugi, K.

M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N. Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, “CT dose reduction factors in the thousands using X-ray phase contrast,” arXiv:1704.03556 (2017).

Uschmann, I.

D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraublich, O. Wehrhan, I. Uschmann, and E. Forster, “Analyzer-based phase-contrast imaging and phase retrieval using a rotating anode X-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

Vartanyants, I. A.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Vine, D. J.

D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraublich, O. Wehrhan, I. Uschmann, and E. Forster, “Analyzer-based phase-contrast imaging and phase retrieval using a rotating anode X-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

Vittoria, F. A.

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

von Zanthier, J.

A. Classen, K. Ayyer, H. Chapman, R. Rohlsberger, and J. von Zanthier, “Incoherent diffractive imaging via intensity correlations of hard X-rays,” arXiv:1705.08677 (2017).

Wagner, U. H.

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

Wallace, M. J.

M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N. Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, “CT dose reduction factors in the thousands using X-ray phase contrast,” arXiv:1704.03556 (2017).

Weckert, E.

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Wehrhan, O.

D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraublich, O. Wehrhan, I. Uschmann, and E. Forster, “Analyzer-based phase-contrast imaging and phase retrieval using a rotating anode X-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

Wilkins, S. W.

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16, 3223–3241 (2008).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, D. M. Paganin, A. Pogany, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination,” Opt. Commun. 259, 569–580 (2006).
[Crossref]

T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, and S. W. Wilkins, “A method for local deconvolution,” Appl. Opt. 42, 6488–6494 (2003).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

Wolf, E.

L. Mandel and E. Wolf, “The measures of bandwidth and coherence time in optics,” Proc. Phys. Soc. London 80, 894–897 (1962).
[Crossref]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Wurth, W.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Xiao, T.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Xie, H.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Yagi, N.

M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N. Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, “CT dose reduction factors in the thousands using X-ray phase contrast,” arXiv:1704.03556 (2017).

Yefanov, O. M.

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

Yu, H.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Zaluzhnyy, I.

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

Zanconati, F.

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

Zhu, D.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Acta Phys. Pol. (1)

G. Baym, “The physics of Hanbury Brown-Twiss intensity interferometry: from stars to nuclear collisions,” Acta Phys. Pol. 29, 1839–1884 (1998).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraublich, O. Wehrhan, I. Uschmann, and E. Forster, “Analyzer-based phase-contrast imaging and phase retrieval using a rotating anode X-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spectrosc. Relat. Phenom. 170, 4–12 (2009).
[Crossref]

J. Microsc. (1)

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref]

J. Opt. Soc. Am A (1)

T. E. Gureyev, A. Kozlov, D. M. Paganin, Y. I. Nesterets, F. De Hoog, and H. M. Quiney, “On the van Cittert-Zernike theorem for intensity correlations and its applications,” J. Opt. Soc. Am A 34, 1577–1584 (2017).

J. Opt. Soc. Am. A (2)

L. Mandel, “Concept of cross-spectral purity in coherence theory,” J. Opt. Soc. Am. A 51, 1342–1350 (1961).
[Crossref]

I. J. Cox and C. J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3, 1152–1158 (1986).
[Crossref]

J. Phys. D (3)

Y. I. Nesterets and T. E. Gureyev, “Noise propagation in x-ray phase-contrast imaging and computed tomography,” J. Phys. D 47, 105402 (2014).
[Crossref]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D 37, 2746–2750 (2004).
[Crossref]

T. E. Gureyev, S. C. Mayo, Y. I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, K. M. Pavlov, M. J. Kitchen, F. Zanconati, C. Dullin, and G. Tromba, “Investigation of imaging quality of synchrotron-based phase-contrast mammographic tomography,” J. Phys. D 47, 365401 (2014).
[Crossref]

J. Sync. Rad. (1)

P. C. Diemoz, F. A. Vittoria, C. K. Hagen, M. Endrizzi, P. Coan, E. Brun, U. H. Wagner, C. Rau, I. K. Robinson, A. Bravine, and A. Olivoa, “Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup,” J. Sync. Rad. 22, 1072–1077 (2015).
[Crossref]

J. Synch. Rad. (1)

Y. Nesterets, T. Gureyev, S. Mayo, A. Stevenson, D. Thompson, J. Brown, M. Kitchen, K. Pavlov, D. Lockie, F. Brun, and G. Tromba, “A feasibility study of X-ray phase-contrast mammographic tomography at the imaging and medical beamline of the Australian Synchrotron,” J. Synch. Rad. 22, 1509–1523 (2015).
[Crossref]

Opt. Commun. (4)

D. M. Paganin and T. E. Gureyev, “Phase contrast, phase retrieval and aberration balancing in shift-invariant linear imaging systems,” Opt. Commun. 281, 965–981 (2008).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, D. M. Paganin, A. Pogany, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination,” Opt. Commun. 259, 569–580 (2006).
[Crossref]

T. E. Gureyev, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
[Crossref]

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

Opt. Express (4)

Philos. Trans. R. Soc. London A (1)

P. B. Felgett and E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
[Crossref]

Phys. Med. Biol. (2)

P. Baran, S. Pacile, Y. I. Nesterets, S. C. Mayo, C. Dullin, D. Dreossi, F. Arfelli, D. Thompson, D. Lockie, M. McCormack, S. T. Taba, F. Brun, M. Pinamonti, C. Nickson, C. Hall, M. Dimmock, F. Zanconati, M. Cholewa, H. Quiney, P. C. Brennan, G. Tromba, and T. E. Gureyev, “Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging,” Phys. Med. Biol. 62, 2315–2332 (2017).
[Crossref]

D. Briedis, K. K. W. Siu, D. M. Paganin, K. M. Pavlov, and R. A. Lewis, “Analyser-based mammography using single-image reconstruction,” Phys. Med. Biol. 50, 3599–3611 (2005).
[Crossref]

Phys. Rev. A (2)

O. Yu. Gorobtsov, G. Mercurio, G. Brenner, U. Lorenz, N. Gerasimova, R. P. Kurta, F. Hieke, P. Skopintsev, I. Zaluzhnyy, S. Lazarev, D. Dzhigaev, M. Rose, A. Singer, W. Wurth, and I. A. Vartanyants, “Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry,” Phys. Rev. A 95, 023843 (2017).
[Crossref]

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000).
[Crossref]

Phys. Rev. Lett. (3)

A. Singer, U. Lorenz, F. Sorgenfrei, N. Gerasimova, J. Gulden, O. M. Yefanov, R. P. Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth, and I. A. Vartanyants, “Hanbury Brown-Twiss interferometry at a free-electron laser,” Phys. Rev. Lett. 111, 034802 (2013).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Proc. Phys. Soc. London (1)

L. Mandel and E. Wolf, “The measures of bandwidth and coherence time in optics,” Proc. Phys. Soc. London 80, 894–897 (1962).
[Crossref]

Proc. R. Soc. London A (2)

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London A 217, 408–432 (1953).
[Crossref]

R. Hanbury Brown and R. Q. Twiss, “Interferometry of the intensity fluctuations in light II. An experimental test of the theory for partially coherent light,” Proc. R. Soc. London A 243, 291–319 (1958).
[Crossref]

Prog. Opt. (2)

D. Gabor, “Light and information,” Prog. Opt. 1, 109–153 (1961).
[Crossref]

T. Shirai, “Modern aspects of intensity interferometry with classical light,” Prog. Opt. 62, 1–72 (2017).
[Crossref]

Sci. Rep. (1)

T. E. Gureyev, A. Kozlov, Y. I. Nesterets, D. M. Paganin, and H. M. Quiney, “On noise-resolution uncertainty in quantum field theory,” Sci. Rep. 7, 4542 (2017).
[Crossref]

Other (5)

M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N. Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, “CT dose reduction factors in the thousands using X-ray phase contrast,” arXiv:1704.03556 (2017).

J. W. Goodman, Statistical Optics (Wiley, 1985).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

A. Classen, K. Ayyer, H. Chapman, R. Rohlsberger, and J. von Zanthier, “Incoherent diffractive imaging via intensity correlations of hard X-rays,” arXiv:1705.08677 (2017).

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1. Setup of (lensless) in-line free-space imaging considered in the present paper.

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

CT,R(x1,x2)IT,R(x1)IT,R(x2)IT,R(x1)IT,R(x2),
CT,R(x1,x2)=CT,Rself(x1,x2)+CT,Rdet(x1,x2),
CT,Rdet(x1,x2)T1δ(x1x2)η1(ν)SR((x1+x2)/2,ν)dν,
CT,Rself(x1,x2)=WR(x1,x2,ν1)WR*(x1,x2,ν2)sinc2[π(ν1ν2)T]dν1dν2,
CT,Rself(x1,x2)T1|WR(x1,x2,ν)|2dν.
CT,Rself(x1,x2)=(Tc/T)|JR(x1,x2)|2,
CP,T,R(x1,x2)=CP,T,Rself(x1,x2)+CP,T,Rdet(x1,x2)T1[|WR(x1,x2,ν)|2+P2(x2x1)η1(ν)SR((x1+x2)/2,ν)]dν,
CP,T,R(x1,x2)T1[SR(x1,ν)SR(x2,ν)+P2(x2x1)η1(ν)SR((x1+x2)/2,ν)]dν.
CP,T,R(x1,x2)(Tc/T)IR(x1)IR(x2)+T1η1P2(x2x1)IR((x1+x2)/2),
VP,T,R(x)(Tc/T)IR2(x)+T1η1(Δ2x)1IR(x),
CP,T,R(x1,x2)|exp{ik/(2R)(x12x22)}QR*(x1,ν)QR(x2,ν)dν|2+T1P2(x2x1)η1(ν)SR((x1+x2)/2,ν)dν.
SR(x,ν)[1σ2x2]S0(x,ν),
VP,T,R(x)T1{[(1σ2x2)S0(x,ν)]2+η1(ν)(Δ2x)1(1σ2x2)S0(x,ν)}dν
|σ22S0(x,ν)S0(x,ν)|=|SR(x,ν)S0(x,ν)1|1.
VP,T,R(x)VP,T,0(x).
SNRR(x)=I¯R(x)VP,T,R1/2(x)I¯0(x)VP,T,01/2(x),
S0,ret(x,ν)=Pσ(xx)SR(x,ν)dx,
VP,T,0ret(x)=VPσ,P,T,R(x)=CP,T,R(xx1,xx2)Pσ(x1)Pσ(x2)dx1dx2VP,T,Rself(x)+[Pσ22/P2(0)]VP,T,Rdet(x)[(Δ2x)/(4σ)]VP,T,R(x),
(Δx)[P]=(4πx2P(x)dx)1/2,
(Δx)R2[P](Δx)2[(1σ2x2)P]=(Δx)2[P]8πσ2.
(Δx)ret2[P1](Δx)2[(1σ2x2)1P1]=(Δx)2[P1]+8πσ2,
SNR0,ret(x)(Δx)0,ret(4σΔ2x)1/2SNR0(x)(Δx)0.
SR(x,ν)Ph(x)*[1j=1αjxj]S0(x,ν),
j=1|αj|hj<1.
IP(x)=P(xx)I(x)dx=[1+j=1pjxj]I(x),with  pj=(1)jj!xjP(x)dx.
I(x)=A(xx)IP(x)dx=[1+j=1ajxj]IP(x),with  aj=(1)jj!xjA(x)dx,
aj=pji=1j1aipji,j=1,2,3.
Win(x1,x2,ν)=Sin1/2(x1,ν)Sin1/2(x2,ν)exp{ik[ψin(x2,ν)ψin(x1,ν)]}exp[ik(x22x12)/(2R1)]gin(x2x1,ν),
W0(x1,x2,ν)=Win(x1,x2,ν)Q*(x1,ν)Q(x2,ν)=Q0*(x1,ν)Q0(x2,ν)exp[ik(x22x12)/(2R1)]gin(x2x1,ν),
WM,R(x1,x2,ν)=1λR2exp{ik[(x2x2)2(x1x1)2]/(2R2)]W0(x1,x2,ν)dx1dx2,
gin(x,ν)=exp(ikxx/R1)Snsrc(x,ν)dx,
WM,R(x1,x2,ν)=1λR2exp[ik(x22x122R2)]exp{ik[(x1x1x2x2)R2+(x1x2)xR1+(x2)2(x1)22R]}×Q0*(x1,ν)Q0(x2,ν)Snsrc(x,ν)dx1dx2dx,
WM,R(x1,x2,ν)=1λR2exp[ik(x22x122R2)]exp{ik2R[x˜12x˜22+(x˜2x2)2(x˜1x1)2]}×Q0*(x1,ν)Q0(x2,ν)Snsrc(x,ν)dx1dx2dx,
WR(x1,x2,ν)=exp[ik(x12x22)/(2R)]QR*(x1,ν)QR(x2,ν),
QR(x,ν)=exp(ikR)i(λR)1/2exp[ik(xx)2/(2R)]Q0(x,ν)dx
WM,R(x1,x2,ν)=exp[ik(x22x122R2)]M1WR(M1x1(M1)M1x,M1x2(M1)M1x,ν)Snsrc(x,ν)dx.
W1,R(x1,x2,ν)=exp[ik(x22x122R2)]WR(x1,x2,ν)=QR*(x1,ν)QR(x2,ν),
SM,R(x,ν)=M1SR(M1x(M1)M1x,ν)Snsrc(x,ν)dx,
CP,T,R(x1,x2)T1M2|WR(M1x1(M1)M1x,M1x2(M1)M1x2,ν)Snsrc(x,ν)dx|2dν+T1M1P2(x1x2)η1(ν)SR(M1(x1+x2)/2(M1)M1x,ν)Snsrc(x,ν)dxdν.
CP,T,R(x1,x2)T1[SR(x1,ν)SR(x2,ν)+P2(x1x2)η1(ν)SR((x1+x2)/2,ν)]dν,

Metrics