Abstract

The traditional Monte Carlo technique of photon transport in random media describes only single point properties of light, such as its intensity. Here we demonstrate an approach that extends these capabilities to simulations involving properties of spatial coherence, a two-point characteristic of light. Numerical experiments illustrate the use of this Monte Carlo technique for describing the propagation of partially spatially coherent light through random multiply scattering media.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation

Laurent Roux, Philippe Mareschal, Nicolas Vukadinovic, Jean-Baptiste Thibaud, and Jean-Jacques Greffet
J. Opt. Soc. Am. A 18(2) 374-384 (2001)

Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues

Carole K. Hayakawa, Eric O. Potma, and Vasan Venugopalan
Biomed. Opt. Express 2(2) 278-290 (2011)

Stokes scattering matrix for human skin

Anak Bhandari, Snorre Stamnes, Børge Hamre, Øyvind Frette, Knut Stamnes, and Jakob J. Stamnes
Appl. Opt. 51(31) 7487-7498 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription