Abstract

This paper proposes a new algorithm for infrared and visible image fusion based on gradient transfer that achieves fusion by preserving the intensity of the infrared image and then transferring gradients in the corresponding visible one to the result. The gradient transfer suffers from the problems of low dynamic range and detail loss because it ignores the intensity from the visible image. The new algorithm solves these problems by providing additive intensity from the visible image to balance the intensity between the infrared image and the visible one. It formulates the fusion task as an l1l1-TV minimization problem and then employs variable splitting and augmented Lagrangian to convert the unconstrained problem to a constrained one that can be solved in the framework of alternating the multiplier direction method. Experiments demonstrate that the new algorithm achieves better fusion results with a high computation efficiency in both qualitative and quantitative tests than gradient transfer and most state-of-the-art methods.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition

Xiaoye Zhang, Yong Ma, Fan Fan, Ying Zhang, and Jun Huang
J. Opt. Soc. Am. A 34(8) 1400-1410 (2017)

Infrared and visible image fusion using multiscale directional nonlocal means filter

Xiang Yan, Hanlin Qin, Jia Li, Huixin Zhou, Jing-guo Zong, and Qingjie Zeng
Appl. Opt. 54(13) 4299-4308 (2015)

Fusion of infrared and visible images for night-vision context enhancement

Zhiqiang Zhou, Mingjie Dong, Xiaozhu Xie, and Zhifeng Gao
Appl. Opt. 55(23) 6480-6490 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription