Abstract

We numerically investigate the mode properties of the V-groove silicon nitride trench waveguides based on the experimental results. The trench waveguides are suitable for nonlinear applications. By manipulating the waveguide thicknesses, the waveguides can achieve zero dispersion or a maximized nonlinear parameter of 0.219  W1·m1 at 1550 nm. Broadband four-wave mixing with a gain of 5.545  m1 is presented as an example. The waveguides can also be applied in sensing applications with an optimized evanescent intensity ratio. By etching away the top flat slabs, wider trapezoidal trench waveguides can be utilized for plasmonic sensing thanks to their TE fundamental modes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon optical trapping using silicon nitride trench waveguides

Qiancheng Zhao, Caner Guclu, Yuewang Huang, Filippo Capolino, Regina Ragan, and Ozdal Boyraz
J. Opt. Soc. Am. B 33(6) 1182-1189 (2016)

Double V-groove ridge waveguides on a silicon substrate

Sanjay Goel, John C. Pincenti, and David L. Naylor
Appl. Opt. 32(3) 318-321 (1993)

Silicon nitride films on silicon for optical waveguides

W. Stutius and W. Streifer
Appl. Opt. 16(12) 3218-3222 (1977)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription