Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Correction technology of a polarization lidar with a complex optical system

Not Accessible

Your library or personal account may give you access

Abstract

A complex optical system used in polarization lidars often modifies the input polarization of the return signal so that it may significantly impact depolarization estimates and introduce errors to polarization lidar measurements. In most cases, retardation, depolarization, and misalignment of the system exist at the same time and interact with each other. Polarization effects of the system cannot be represented by a simple correction coefficient, so they cannot be removed using a traditional calibration method. Detailed analysis and correction technologies were provided to remove systematic biases in estimating depolarization values from a polarization lidar owing to multiple optical components. The Mueller matrices from an emitter to a receiver were calculated, and the expression for an aerosol depolarization parameter including system polarization effects was derived and obtained. In addition, the correction algorithm based on the Mueller matrix was introduced and provided. A polarization lidar was established, and the polarization characteristics of its optical components were measured with a laboratory ellipsometer; then, the Mueller matrix of the receiver was calculated and obtained. Lidar observations were performed, and our correction algorithm was applied to lidar field data. The results show that the correction method can significantly remove systematic polarization effects.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Polarization analysis and corrections of different telescopes in polarization lidar

Huige Di, Dengxin Hua, Leijie Yan, Xiaolong Hou, and Xin Wei
Appl. Opt. 54(3) 389-397 (2015)

General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices

Matthew Hayman and Jeffrey P. Thayer
J. Opt. Soc. Am. A 29(4) 400-409 (2012)

Polarization properties of receiving telescopes in atmospheric remote sensing polarization lidars

Jing Luo, Dong Liu, Zihao Huang, Binyu Wang, Jian Bai, Zhongtao Cheng, Yupeng Zhang, Peijun Tang, Liming Yang, and Lin Su
Appl. Opt. 56(24) 6837-6845 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.