Abstract

We present a design for an omnidirectional transformation-optics (TO) cloak comprising thin lenses and glenses (generalized thin lenses) [J. Opt. Soc. Am. A 33, 962 (2016) [CrossRef]  ]. It should be possible to realize such devices in pixelated form. Our design is a piecewise nonaffine generalization of piecewise affine pixelated-TO devices [Proc. SPIE 9193, 91931E (2014) [CrossRef]  ; J. Opt 18, 044009 (2016)]. It is intended to be a step in the direction of TO devices made entirely from lenses, which should be readily realizable on large length scales and for a broad range of wavelengths.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Ray optics of generalized lenses

Gregory J. Chaplain, Gavin Macauley, Jakub Bělín, Tomáš Tyc, Euan N. Cowie, and Johannes Courtial
J. Opt. Soc. Am. A 33(5) 962-969 (2016)

Fourier optics theory for invisibility cloaks

Kedi Wu, Qiluan Cheng, and Guo Ping Wang
J. Opt. Soc. Am. B 28(6) 1467-1474 (2011)

Photorealistic ray tracing of free-space invisibility cloaks made of uniaxial dielectrics

Jad C. Halimeh and Martin Wegener
Opt. Express 20(27) 28330-28340 (2012)

References

  • View by:
  • |
  • |
  • |

  1. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [Crossref]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref]
  4. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
    [Crossref]
  5. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
    [Crossref]
  6. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
    [Crossref]
  7. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12, 25–28 (2013).
    [Crossref]
  8. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [Crossref]
  9. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
    [Crossref]
  10. H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
  11. J. C. Howell, J. B. Howell, and J. S. Choi, “Amplitude-only, passive, broadband, optical spatial cloaking of very large objects,” Appl. Opt. 53, 1958–1963 (2014).
    [Crossref]
  12. J. S. Choi and J. C. Howell, “Paraxial ray optics cloaking,” Opt. Express 22, 29465–29478 (2014).
    [Crossref]
  13. R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
    [Crossref]
  14. R. Hu, X. Wei, J. Hu, and X. Luo, “Local heating realization by reverse thermal cloak,” Sci. Rep. 4, 3600 (2014).
  15. B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “Experimental acoustic ground cloak in air,” Phys. Rev. Lett. 106, 253901 (2011).
    [Crossref]
  16. N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,” Phys. Rev. Lett. 108, 014301 (2012).
    [Crossref]
  17. S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau, “Experiments on seismic metamaterials: molding surface waves,” Phys. Rev. Lett. 112, 133901 (2014).
    [Crossref]
  18. H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104, 253903 (2010).
    [Crossref]
  19. H. Hashemi, A. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “General scaling limitations of ground-plane and isolated-object cloaks,” Phys. Rev. A 84, 023815 (2011).
    [Crossref]
  20. H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86, 013804 (2012).
    [Crossref]
  21. J. C. Halimeh, T. Ergin, J. Mueller, N. Stenger, and M. Wegener, “Photorealistic images of carpet cloaks,” Opt. Express 17, 19328–19336 (2009).
    [Crossref]
  22. B. Zhang, T. Chan, and B.-I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010).
    [Crossref]
  23. J. C. Halimeh, R. Schmied, and M. Wegener, “Newtonian photorealistic ray tracing of grating cloaks and collation-function-based cloaking-quality assessment,” Opt. Express 19, 6078–6092 (2011).
    [Crossref]
  24. J. C. Halimeh and M. Wegener, “Photorealistic ray tracing of free-space invisibility cloaks made of uniaxial dielectrics,” Opt. Express 20, 28330–28340 (2012).
    [Crossref]
  25. A. J. Danner, “Visualizing invisibility: metamaterials-based optical devices in natural environments,” Opt. Express 18, 3332–3337 (2010).
    [Crossref]
  26. C.-W. Qiu, A. Akbarzadeh, T. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys. 14, 033024 (2012).
    [Crossref]
  27. A. C. Hamilton and J. Courtial, “Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit,” New J. Phys. 11, 013042 (2009).
    [Crossref]
  28. J. Courtial, “Ray-optical refraction with confocal lenslet arrays,” New J. Phys. 10, 083033 (2008).
    [Crossref]
  29. A. C. Hamilton and J. Courtial, “Generalized refraction using lenslet arrays,” J. Opt. A 11, 065502 (2009).
    [Crossref]
  30. J. Courtial and T. Tyc, “Generalised laws of refraction that can lead to wave-optically forbidden light-ray fields,” J. Opt. Soc. Am. A 29, 1407–1411 (2012).
    [Crossref]
  31. G. J. Chaplain, G. Macauley, J. Bělín, T. Tyc, E. N. Cowie, and J. Courtial, “Ray optics of generalized lenses,” J. Opt. Soc. Am. A 33, 962–969 (2016).
    [Crossref]
  32. R. F. Stevens and T. G. Harvey, “Lens arrays for a three-dimensional imaging system,” J. Opt. A 4, S17–S21 (2002).
    [Crossref]
  33. J. Courtial, “Standard and non-standard metarefraction with confocal lenslet arrays,” Opt. Commun. 282, 2634–2641 (2009).
    [Crossref]
  34. T. Maceina, G. Juzeliūnas, and J. Courtial, “Quantifying metarefraction with confocal lenslet arrays,” Opt. Commun. 284, 5008–5019 (2011).
    [Crossref]
  35. Rowlux Illusion Film, which has a structure that is closely related to that of telescope windows, is inexpensive and available on meter scales from Rowland Technologies Inc.; see “Rowlux illusion film (data sheet),” http://www.rowtec.com/literaturedownloads.html .
  36. S. Oxburgh and J. Courtial, “Perfect imaging with planar interfaces,” J. Opt. Soc. Am. A 30, 2334–2338 (2013).
    [Crossref]
  37. S. Oxburgh, C. D. White, G. Antoniou, E. Orife, and J. Courtial, “Transformation optics with windows,” Proc. SPIE 9193, 91931E (2014).
    [Crossref]
  38. S. Oxburgh, C. D. White, G. Antoniou, E. Orife, T. Sharpe, and J. Courtial, “Large-scale, white-light, transformation optics using integral imaging,” J. Opt. 18, 044009 (2016).
  39. J. Courtial, “Geometric limits to geometric optical imaging with infinite, planar, non-absorbing sheets,” Opt. Commun. 282, 2480–2483 (2009).
    [Crossref]
  40. J. Courtial, S. Oxburgh, and T. Tyc, “Direct, stigmatic, imaging with curved surfaces,” J. Opt. Soc. Am. A 32, 478–481 (2015).
    [Crossref]
  41. C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A 1, 94–102 (1999).
    [Crossref]
  42. D. Gabor, “Improvements in or relating to optical systems composed of lenticules,” UK patent541,753 (December10, 1941).
  43. D. Lambert, A. C. Hamilton, G. Constable, H. Snehanshu, S. Talati, and J. Courtial, “TIM, a ray-tracing program for METATOY research and its dissemination,” Comput. Phys. Commun. 183, 711–732 (2012).
    [Crossref]
  44. S. Oxburgh, T. Tyc, and J. Courtial, “Dr TIM: ray-tracer TIM, with additional specialist capabilities,” Comput. Phys. Commun. 185, 1027–1037 (2014).
    [Crossref]
  45. “TIM: a raytracer for forbidden optics,” http://sourceforge.net/projects/timray/ .

2016 (2)

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, T. Sharpe, and J. Courtial, “Large-scale, white-light, transformation optics using integral imaging,” J. Opt. 18, 044009 (2016).

G. J. Chaplain, G. Macauley, J. Bělín, T. Tyc, E. N. Cowie, and J. Courtial, “Ray optics of generalized lenses,” J. Opt. Soc. Am. A 33, 962–969 (2016).
[Crossref]

2015 (1)

2014 (6)

J. C. Howell, J. B. Howell, and J. S. Choi, “Amplitude-only, passive, broadband, optical spatial cloaking of very large objects,” Appl. Opt. 53, 1958–1963 (2014).
[Crossref]

J. S. Choi and J. C. Howell, “Paraxial ray optics cloaking,” Opt. Express 22, 29465–29478 (2014).
[Crossref]

S. Oxburgh, T. Tyc, and J. Courtial, “Dr TIM: ray-tracer TIM, with additional specialist capabilities,” Comput. Phys. Commun. 185, 1027–1037 (2014).
[Crossref]

S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau, “Experiments on seismic metamaterials: molding surface waves,” Phys. Rev. Lett. 112, 133901 (2014).
[Crossref]

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, and J. Courtial, “Transformation optics with windows,” Proc. SPIE 9193, 91931E (2014).
[Crossref]

R. Hu, X. Wei, J. Hu, and X. Luo, “Local heating realization by reverse thermal cloak,” Sci. Rep. 4, 3600 (2014).

2013 (4)

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12, 25–28 (2013).
[Crossref]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
[Crossref]

S. Oxburgh and J. Courtial, “Perfect imaging with planar interfaces,” J. Opt. Soc. Am. A 30, 2334–2338 (2013).
[Crossref]

2012 (6)

J. Courtial and T. Tyc, “Generalised laws of refraction that can lead to wave-optically forbidden light-ray fields,” J. Opt. Soc. Am. A 29, 1407–1411 (2012).
[Crossref]

J. C. Halimeh and M. Wegener, “Photorealistic ray tracing of free-space invisibility cloaks made of uniaxial dielectrics,” Opt. Express 20, 28330–28340 (2012).
[Crossref]

N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,” Phys. Rev. Lett. 108, 014301 (2012).
[Crossref]

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86, 013804 (2012).
[Crossref]

C.-W. Qiu, A. Akbarzadeh, T. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys. 14, 033024 (2012).
[Crossref]

D. Lambert, A. C. Hamilton, G. Constable, H. Snehanshu, S. Talati, and J. Courtial, “TIM, a ray-tracing program for METATOY research and its dissemination,” Comput. Phys. Commun. 183, 711–732 (2012).
[Crossref]

2011 (6)

T. Maceina, G. Juzeliūnas, and J. Courtial, “Quantifying metarefraction with confocal lenslet arrays,” Opt. Commun. 284, 5008–5019 (2011).
[Crossref]

H. Hashemi, A. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “General scaling limitations of ground-plane and isolated-object cloaks,” Phys. Rev. A 84, 023815 (2011).
[Crossref]

B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “Experimental acoustic ground cloak in air,” Phys. Rev. Lett. 106, 253901 (2011).
[Crossref]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[Crossref]

J. C. Halimeh, R. Schmied, and M. Wegener, “Newtonian photorealistic ray tracing of grating cloaks and collation-function-based cloaking-quality assessment,” Opt. Express 19, 6078–6092 (2011).
[Crossref]

2010 (4)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref]

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104, 253903 (2010).
[Crossref]

A. J. Danner, “Visualizing invisibility: metamaterials-based optical devices in natural environments,” Opt. Express 18, 3332–3337 (2010).
[Crossref]

B. Zhang, T. Chan, and B.-I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010).
[Crossref]

2009 (7)

J. Courtial, “Geometric limits to geometric optical imaging with infinite, planar, non-absorbing sheets,” Opt. Commun. 282, 2480–2483 (2009).
[Crossref]

J. C. Halimeh, T. Ergin, J. Mueller, N. Stenger, and M. Wegener, “Photorealistic images of carpet cloaks,” Opt. Express 17, 19328–19336 (2009).
[Crossref]

A. C. Hamilton and J. Courtial, “Generalized refraction using lenslet arrays,” J. Opt. A 11, 065502 (2009).
[Crossref]

J. Courtial, “Standard and non-standard metarefraction with confocal lenslet arrays,” Opt. Commun. 282, 2634–2641 (2009).
[Crossref]

A. C. Hamilton and J. Courtial, “Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit,” New J. Phys. 11, 013042 (2009).
[Crossref]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

2008 (1)

J. Courtial, “Ray-optical refraction with confocal lenslet arrays,” New J. Phys. 10, 083033 (2008).
[Crossref]

2006 (3)

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

2002 (1)

R. F. Stevens and T. G. Harvey, “Lens arrays for a three-dimensional imaging system,” J. Opt. A 4, S17–S21 (2002).
[Crossref]

1999 (1)

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A 1, 94–102 (1999).
[Crossref]

Akbarzadeh, A.

C.-W. Qiu, A. Akbarzadeh, T. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys. 14, 033024 (2012).
[Crossref]

Antoniou, G.

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, T. Sharpe, and J. Courtial, “Large-scale, white-light, transformation optics using integral imaging,” J. Opt. 18, 044009 (2016).

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, and J. Courtial, “Transformation optics with windows,” Proc. SPIE 9193, 91931E (2014).
[Crossref]

Barbastathis, G.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[Crossref]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Belín, J.

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref]

Brûlé, S.

S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau, “Experiments on seismic metamaterials: molding surface waves,” Phys. Rev. Lett. 112, 133901 (2014).
[Crossref]

Chan, T.

B. Zhang, T. Chan, and B.-I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010).
[Crossref]

Chaplain, G. J.

Chen, H.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

Choi, J. S.

Constable, G.

D. Lambert, A. C. Hamilton, G. Constable, H. Snehanshu, S. Talati, and J. Courtial, “TIM, a ray-tracing program for METATOY research and its dissemination,” Comput. Phys. Commun. 183, 711–732 (2012).
[Crossref]

Courtial, J.

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, T. Sharpe, and J. Courtial, “Large-scale, white-light, transformation optics using integral imaging,” J. Opt. 18, 044009 (2016).

G. J. Chaplain, G. Macauley, J. Bělín, T. Tyc, E. N. Cowie, and J. Courtial, “Ray optics of generalized lenses,” J. Opt. Soc. Am. A 33, 962–969 (2016).
[Crossref]

J. Courtial, S. Oxburgh, and T. Tyc, “Direct, stigmatic, imaging with curved surfaces,” J. Opt. Soc. Am. A 32, 478–481 (2015).
[Crossref]

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, and J. Courtial, “Transformation optics with windows,” Proc. SPIE 9193, 91931E (2014).
[Crossref]

S. Oxburgh, T. Tyc, and J. Courtial, “Dr TIM: ray-tracer TIM, with additional specialist capabilities,” Comput. Phys. Commun. 185, 1027–1037 (2014).
[Crossref]

S. Oxburgh and J. Courtial, “Perfect imaging with planar interfaces,” J. Opt. Soc. Am. A 30, 2334–2338 (2013).
[Crossref]

D. Lambert, A. C. Hamilton, G. Constable, H. Snehanshu, S. Talati, and J. Courtial, “TIM, a ray-tracing program for METATOY research and its dissemination,” Comput. Phys. Commun. 183, 711–732 (2012).
[Crossref]

J. Courtial and T. Tyc, “Generalised laws of refraction that can lead to wave-optically forbidden light-ray fields,” J. Opt. Soc. Am. A 29, 1407–1411 (2012).
[Crossref]

T. Maceina, G. Juzeliūnas, and J. Courtial, “Quantifying metarefraction with confocal lenslet arrays,” Opt. Commun. 284, 5008–5019 (2011).
[Crossref]

J. Courtial, “Standard and non-standard metarefraction with confocal lenslet arrays,” Opt. Commun. 282, 2634–2641 (2009).
[Crossref]

A. C. Hamilton and J. Courtial, “Generalized refraction using lenslet arrays,” J. Opt. A 11, 065502 (2009).
[Crossref]

A. C. Hamilton and J. Courtial, “Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit,” New J. Phys. 11, 013042 (2009).
[Crossref]

J. Courtial, “Geometric limits to geometric optical imaging with infinite, planar, non-absorbing sheets,” Opt. Commun. 282, 2480–2483 (2009).
[Crossref]

J. Courtial, “Ray-optical refraction with confocal lenslet arrays,” New J. Phys. 10, 083033 (2008).
[Crossref]

Cowie, E. N.

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

Cummer, S. A.

B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “Experimental acoustic ground cloak in air,” Phys. Rev. Lett. 106, 253901 (2011).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Danner, A. J.

C.-W. Qiu, A. Akbarzadeh, T. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys. 14, 033024 (2012).
[Crossref]

A. J. Danner, “Visualizing invisibility: metamaterials-based optical devices in natural environments,” Opt. Express 18, 3332–3337 (2010).
[Crossref]

Enoch, S.

S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau, “Experiments on seismic metamaterials: molding surface waves,” Phys. Rev. Lett. 112, 133901 (2014).
[Crossref]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref]

J. C. Halimeh, T. Ergin, J. Mueller, N. Stenger, and M. Wegener, “Photorealistic images of carpet cloaks,” Opt. Express 17, 19328–19336 (2009).
[Crossref]

Gabor, D.

D. Gabor, “Improvements in or relating to optical systems composed of lenticules,” UK patent541,753 (December10, 1941).

Guenneau, S.

S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau, “Experiments on seismic metamaterials: molding surface waves,” Phys. Rev. Lett. 112, 133901 (2014).
[Crossref]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
[Crossref]

Halimeh, J. C.

Hamilton, A. C.

D. Lambert, A. C. Hamilton, G. Constable, H. Snehanshu, S. Talati, and J. Courtial, “TIM, a ray-tracing program for METATOY research and its dissemination,” Comput. Phys. Commun. 183, 711–732 (2012).
[Crossref]

A. C. Hamilton and J. Courtial, “Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit,” New J. Phys. 11, 013042 (2009).
[Crossref]

A. C. Hamilton and J. Courtial, “Generalized refraction using lenslet arrays,” J. Opt. A 11, 065502 (2009).
[Crossref]

Han, T.

C.-W. Qiu, A. Akbarzadeh, T. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys. 14, 033024 (2012).
[Crossref]

Harvey, T. G.

R. F. Stevens and T. G. Harvey, “Lens arrays for a three-dimensional imaging system,” J. Opt. A 4, S17–S21 (2002).
[Crossref]

Hashemi, H.

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86, 013804 (2012).
[Crossref]

H. Hashemi, A. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “General scaling limitations of ground-plane and isolated-object cloaks,” Phys. Rev. A 84, 023815 (2011).
[Crossref]

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104, 253903 (2010).
[Crossref]

Hembd-Sölner, C.

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A 1, 94–102 (1999).
[Crossref]

Howell, J. B.

Howell, J. C.

Hu, J.

R. Hu, X. Wei, J. Hu, and X. Luo, “Local heating realization by reverse thermal cloak,” Sci. Rep. 4, 3600 (2014).

Hu, R.

R. Hu, X. Wei, J. Hu, and X. Luo, “Local heating realization by reverse thermal cloak,” Sci. Rep. 4, 3600 (2014).

Hutley, M. C.

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A 1, 94–102 (1999).
[Crossref]

Javelaud, E. H.

S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau, “Experiments on seismic metamaterials: molding surface waves,” Phys. Rev. Lett. 112, 133901 (2014).
[Crossref]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref]

Joannopoulos, J. D.

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86, 013804 (2012).
[Crossref]

H. Hashemi, A. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “General scaling limitations of ground-plane and isolated-object cloaks,” Phys. Rev. A 84, 023815 (2011).
[Crossref]

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104, 253903 (2010).
[Crossref]

Johnson, S. G.

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86, 013804 (2012).
[Crossref]

H. Hashemi, A. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “General scaling limitations of ground-plane and isolated-object cloaks,” Phys. Rev. A 84, 023815 (2011).
[Crossref]

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104, 253903 (2010).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Juzeliunas, G.

T. Maceina, G. Juzeliūnas, and J. Courtial, “Quantifying metarefraction with confocal lenslet arrays,” Opt. Commun. 284, 5008–5019 (2011).
[Crossref]

Kadic, M.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
[Crossref]

Lambert, D.

D. Lambert, A. C. Hamilton, G. Constable, H. Snehanshu, S. Talati, and J. Courtial, “TIM, a ray-tracing program for METATOY research and its dissemination,” Comput. Phys. Commun. 183, 711–732 (2012).
[Crossref]

Landy, N.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12, 25–28 (2013).
[Crossref]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

Liu, X.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[Crossref]

Luo, X.

R. Hu, X. Wei, J. Hu, and X. Luo, “Local heating realization by reverse thermal cloak,” Sci. Rep. 4, 3600 (2014).

Luo, Y.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[Crossref]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref]

Macauley, G.

Maceina, T.

T. Maceina, G. Juzeliūnas, and J. Courtial, “Quantifying metarefraction with confocal lenslet arrays,” Opt. Commun. 284, 5008–5019 (2011).
[Crossref]

McCauley, A. P.

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86, 013804 (2012).
[Crossref]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Mueller, J.

Orife, E.

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, T. Sharpe, and J. Courtial, “Large-scale, white-light, transformation optics using integral imaging,” J. Opt. 18, 044009 (2016).

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, and J. Courtial, “Transformation optics with windows,” Proc. SPIE 9193, 91931E (2014).
[Crossref]

Oskooi, A.

H. Hashemi, A. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “General scaling limitations of ground-plane and isolated-object cloaks,” Phys. Rev. A 84, 023815 (2011).
[Crossref]

Oxburgh, S.

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, T. Sharpe, and J. Courtial, “Large-scale, white-light, transformation optics using integral imaging,” J. Opt. 18, 044009 (2016).

J. Courtial, S. Oxburgh, and T. Tyc, “Direct, stigmatic, imaging with curved surfaces,” J. Opt. Soc. Am. A 32, 478–481 (2015).
[Crossref]

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, and J. Courtial, “Transformation optics with windows,” Proc. SPIE 9193, 91931E (2014).
[Crossref]

S. Oxburgh, T. Tyc, and J. Courtial, “Dr TIM: ray-tracer TIM, with additional specialist capabilities,” Comput. Phys. Commun. 185, 1027–1037 (2014).
[Crossref]

S. Oxburgh and J. Courtial, “Perfect imaging with planar interfaces,” J. Opt. Soc. Am. A 30, 2334–2338 (2013).
[Crossref]

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

Popa, B.-I.

B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “Experimental acoustic ground cloak in air,” Phys. Rev. Lett. 106, 253901 (2011).
[Crossref]

Qiu, C.-W.

C.-W. Qiu, A. Akbarzadeh, T. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys. 14, 033024 (2012).
[Crossref]

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86, 013804 (2012).
[Crossref]

Schittny, R.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
[Crossref]

Schmied, R.

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Sharpe, T.

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, T. Sharpe, and J. Courtial, “Large-scale, white-light, transformation optics using integral imaging,” J. Opt. 18, 044009 (2016).

Shen, L.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).

Smith, D. R.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12, 25–28 (2013).
[Crossref]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Snehanshu, H.

D. Lambert, A. C. Hamilton, G. Constable, H. Snehanshu, S. Talati, and J. Courtial, “TIM, a ray-tracing program for METATOY research and its dissemination,” Comput. Phys. Commun. 183, 711–732 (2012).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Stenger, N.

N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,” Phys. Rev. Lett. 108, 014301 (2012).
[Crossref]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref]

J. C. Halimeh, T. Ergin, J. Mueller, N. Stenger, and M. Wegener, “Photorealistic images of carpet cloaks,” Opt. Express 17, 19328–19336 (2009).
[Crossref]

Stevens, R. F.

R. F. Stevens and T. G. Harvey, “Lens arrays for a three-dimensional imaging system,” J. Opt. A 4, S17–S21 (2002).
[Crossref]

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A 1, 94–102 (1999).
[Crossref]

Talati, S.

D. Lambert, A. C. Hamilton, G. Constable, H. Snehanshu, S. Talati, and J. Courtial, “TIM, a ray-tracing program for METATOY research and its dissemination,” Comput. Phys. Commun. 183, 711–732 (2012).
[Crossref]

Tyc, T.

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Wang, H.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).

Wegener, M.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
[Crossref]

J. C. Halimeh and M. Wegener, “Photorealistic ray tracing of free-space invisibility cloaks made of uniaxial dielectrics,” Opt. Express 20, 28330–28340 (2012).
[Crossref]

N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,” Phys. Rev. Lett. 108, 014301 (2012).
[Crossref]

J. C. Halimeh, R. Schmied, and M. Wegener, “Newtonian photorealistic ray tracing of grating cloaks and collation-function-based cloaking-quality assessment,” Opt. Express 19, 6078–6092 (2011).
[Crossref]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref]

J. C. Halimeh, T. Ergin, J. Mueller, N. Stenger, and M. Wegener, “Photorealistic images of carpet cloaks,” Opt. Express 17, 19328–19336 (2009).
[Crossref]

Wei, X.

R. Hu, X. Wei, J. Hu, and X. Luo, “Local heating realization by reverse thermal cloak,” Sci. Rep. 4, 3600 (2014).

White, C. D.

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, T. Sharpe, and J. Courtial, “Large-scale, white-light, transformation optics using integral imaging,” J. Opt. 18, 044009 (2016).

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, and J. Courtial, “Transformation optics with windows,” Proc. SPIE 9193, 91931E (2014).
[Crossref]

Wilhelm, M.

N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,” Phys. Rev. Lett. 108, 014301 (2012).
[Crossref]

Wu, B.-I.

B. Zhang, T. Chan, and B.-I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010).
[Crossref]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Zhang, B.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[Crossref]

B. Zhang, T. Chan, and B.-I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010).
[Crossref]

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104, 253903 (2010).
[Crossref]

Zhang, J.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref]

Zhang, S.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref]

Zhang, X.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

Zheludev, N.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).

Zheng, B.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).

Zigoneanu, L.

B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “Experimental acoustic ground cloak in air,” Phys. Rev. Lett. 106, 253901 (2011).
[Crossref]

Appl. Opt. (1)

Comput. Phys. Commun. (2)

D. Lambert, A. C. Hamilton, G. Constable, H. Snehanshu, S. Talati, and J. Courtial, “TIM, a ray-tracing program for METATOY research and its dissemination,” Comput. Phys. Commun. 183, 711–732 (2012).
[Crossref]

S. Oxburgh, T. Tyc, and J. Courtial, “Dr TIM: ray-tracer TIM, with additional specialist capabilities,” Comput. Phys. Commun. 185, 1027–1037 (2014).
[Crossref]

J. Opt. (1)

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, T. Sharpe, and J. Courtial, “Large-scale, white-light, transformation optics using integral imaging,” J. Opt. 18, 044009 (2016).

J. Opt. A (3)

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A 1, 94–102 (1999).
[Crossref]

A. C. Hamilton and J. Courtial, “Generalized refraction using lenslet arrays,” J. Opt. A 11, 065502 (2009).
[Crossref]

R. F. Stevens and T. G. Harvey, “Lens arrays for a three-dimensional imaging system,” J. Opt. A 4, S17–S21 (2002).
[Crossref]

J. Opt. Soc. Am. A (4)

Nat. Commun. (2)

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).

Nat. Mater. (2)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12, 25–28 (2013).
[Crossref]

New J. Phys. (3)

C.-W. Qiu, A. Akbarzadeh, T. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys. 14, 033024 (2012).
[Crossref]

A. C. Hamilton and J. Courtial, “Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit,” New J. Phys. 11, 013042 (2009).
[Crossref]

J. Courtial, “Ray-optical refraction with confocal lenslet arrays,” New J. Phys. 10, 083033 (2008).
[Crossref]

Opt. Commun. (3)

J. Courtial, “Standard and non-standard metarefraction with confocal lenslet arrays,” Opt. Commun. 282, 2634–2641 (2009).
[Crossref]

T. Maceina, G. Juzeliūnas, and J. Courtial, “Quantifying metarefraction with confocal lenslet arrays,” Opt. Commun. 284, 5008–5019 (2011).
[Crossref]

J. Courtial, “Geometric limits to geometric optical imaging with infinite, planar, non-absorbing sheets,” Opt. Commun. 282, 2480–2483 (2009).
[Crossref]

Opt. Express (5)

Phys. Rev. A (2)

H. Hashemi, A. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “General scaling limitations of ground-plane and isolated-object cloaks,” Phys. Rev. A 84, 023815 (2011).
[Crossref]

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86, 013804 (2012).
[Crossref]

Phys. Rev. Lett. (7)

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
[Crossref]

B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “Experimental acoustic ground cloak in air,” Phys. Rev. Lett. 106, 253901 (2011).
[Crossref]

N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,” Phys. Rev. Lett. 108, 014301 (2012).
[Crossref]

S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau, “Experiments on seismic metamaterials: molding surface waves,” Phys. Rev. Lett. 112, 133901 (2014).
[Crossref]

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104, 253903 (2010).
[Crossref]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[Crossref]

B. Zhang, T. Chan, and B.-I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010).
[Crossref]

Proc. SPIE (1)

S. Oxburgh, C. D. White, G. Antoniou, E. Orife, and J. Courtial, “Transformation optics with windows,” Proc. SPIE 9193, 91931E (2014).
[Crossref]

Sci. Rep. (1)

R. Hu, X. Wei, J. Hu, and X. Luo, “Local heating realization by reverse thermal cloak,” Sci. Rep. 4, 3600 (2014).

Science (5)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref]

Other (3)

Rowlux Illusion Film, which has a structure that is closely related to that of telescope windows, is inexpensive and available on meter scales from Rowland Technologies Inc.; see “Rowlux illusion film (data sheet),” http://www.rowtec.com/literaturedownloads.html .

“TIM: a raytracer for forbidden optics,” http://sourceforge.net/projects/timray/ .

D. Gabor, “Improvements in or relating to optical systems composed of lenticules,” UK patent541,753 (December10, 1941).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Cardinal points and principal rays of a glens. The glens is indicated by the thick cyan vertical line through point P. The dashed–dotted horizontal line is the optical axis. The positive and negative sides of the glens are indicated with a “+” and a “−” on the corresponding side of the glens. N is the nodal point, P is the principal point, and F and F+ are the focal points in negative and positive space, respectively. The rays (red arrows), which pass through the positive (ray 1) and negative (ray 2) focal points and through the nodal point (ray 3), are all examples of principal rays.

Fig. 2.
Fig. 2.

Structure of a two-dimensional square cloak in physical space (solid cyan lines) and EM space (dotted black lines). Physical space is divided into six polygon-shaped regions, R0 to R5. Region R0 is the outside of the cloak, in which physical space and EM space are identical; region R5 is the inside of the cloak. Each straight line dividing two regions represents a glens; the glens separating regions Ri and Rj is called Gij. A few of the vertices of the regions are also marked. Three or more regions meet there; the vertex where regions Ri,Rj,Rk, meet is labeled Vijk.

Fig. 3.
Fig. 3.

Construction of the cardinal points of the glenses that form the cloak shown in Fig. 2. (a) Outer glenses, (b) inner glenses, and (c) diagonal glenses.

Fig. 4.
Fig. 4.

Imaging properties of the glens combinations encountered along different types of ray trajectories through the cloak.

Fig. 5.
Fig. 5.

Simulation of the cubic glens cloak. (a) A cylinder frame indicates the structure of the cloak. Wherever two or more glenses meet, a red cylinder is placed. The effect of the glenses is not simulated, which is why the sphere placed inside the central cube can be seen at its actual size. (b) When the effect of the glenses is simulated (and the cylinder frame removed), the effect of the cloak can be seen. The sphere inside the cloak is seen at a fraction of its actual size. The head behind the cloak is partially seen through the cloak, but appears in its actual position and at its actual size. The glenses have been made slightly absorbing so that the cloak can just be seen. The figure was calculated for L=2 (in units of the floor-tile side length), a=0.8, and a=0.4, which means the central cube appears to be half (a/a) of its actual size. The simulation was performed with an extended version of Dr TIM [43,44].

Fig. 6.
Fig. 6.

Cubic glens cloak. (a) The same as the cloak shown in Fig. 5(a), but seen from a different direction. (b) Like (a), but with the parameters chosen such that the EM-space size of the inner cube is one-tenth of its physical-space size, so it appears to be a tenth of its actual size (a=0.08; like before, a=0.8). The simulation was performed with an extended version of Dr TIM [43,44].

Fig. 7.
Fig. 7.

Construction of the cardinal points of a glens in a given plane from two pairs of conjugate points. The glens images Q and Q+ into each other, and R and R+. PQ and PQ+ are the orthographic projections of positions Q and Q+ into the glens plane.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n=f+f+.
f+=(F+P)·a^,

Metrics