Abstract

A strategy for the efficient numerical evaluation of Sommerfeld integrals in the context of electromagnetic scattering at particles embedded in a plane parallel layer system is presented. The scheme relies on a lookup-table approach in combination with an asymptotic approximation of the Bessel function in order to enable the use of fast Fourier transformation. Accuracy of the algorithm is enhanced by means of singularity extraction and a novel technique to treat the integrand at small arguments. For short particle distances, this method is accomplished by a slower but more robust direct integration along a deflected contour. As an example, we investigate enhanced light extraction from an organic light-emitting diode by optical scattering particles. The calculations are discussed with respect to accuracy and computing time. By means of the present strategy, an accurate evaluation of the scattered field for several thousand wavelength scale particles can be achieved within a few hours on a conventional workstation computer.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A fast solver for multi-particle scattering in a layered medium

Jun Lai, Motoki Kobayashi, and Leslie Greengard
Opt. Express 22(17) 20481-20499 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription