Abstract

Age-related changes in chromatic discrimination along dichromatic confusion lines were measured with the Cambridge Colour Test (CCT). One hundred and sixty-two individuals (16 to 88 years old) with normal Rayleigh matches were the major focus of this paper. An additional 32 anomalous trichromats classified by their Rayleigh matches were also tested. All subjects were screened to rule out abnormalities of the anterior and posterior segments. Thresholds on all three chromatic vectors measured with the CCT showed age-related increases. Protan and deutan vector thresholds increased linearly with age while the tritan vector threshold was described with a bilinear model. Analysis and modeling demonstrated that the nominal vectors of the CCT are shifted by senescent changes in ocular media density, and a method for correcting the CCT vectors is demonstrated. A correction for these shifts indicates that classification among individuals of different ages is unaffected. New vector thresholds for elderly observers and for all age groups are suggested based on calculated tolerance limits.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The Verriest Lecture: Short-wave-sensitive cone pathways across the life span

John S. Werner
J. Opt. Soc. Am. A 33(3) A104-A122 (2016)

Variation of color discrimination across the life span

Galina V. Paramei and Beata Oakley
J. Opt. Soc. Am. A 31(4) A375-A384 (2014)

Color discrimination across four life decades assessed by the Cambridge Colour Test

Galina V. Paramei
J. Opt. Soc. Am. A 29(2) A290-A297 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Werner, B. E. Schefrin, and A. Bradley, “Optics and vision of the aging eye,” in Handbook of Optics, M. Bass, ed., Vol. III of Vision and Optics (McGraw-Hill, 2010), pp. 13.1–13.31.
  2. J. S. Werner, “Visual problems of the retina during ageing: compensation mechanisms and colour constancy across the life span,” Prog. Retina Eye Res. 15, 621–645 (1996).
    [Crossref]
  3. J. S. Werner and V. G. Steele, “Sensitivity of human foveal color mechanisms throughout the life span,” J. Opt. Soc. Am. A 5, 2122–2130 (1988).
    [Crossref]
  4. A. G. Balazsi, J. Rootman, S. M. Drance, M. Schulzer, and G. R. Douglas, “The effect of age on the nerve fiber population of the human optic nerve,” Am. J. Ophthalmol. 97, 760–766 (1984).
    [Crossref]
  5. C. A. Curcio and D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
    [Crossref]
  6. H. Brody, “Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex,” J. Comp. Neurol. 102, 511–556 (1955).
    [Crossref]
  7. K. O. Devaney and H. A. Johnson, “Neuron loss in the aging visual cortex of man,” J. Gerontol. 35, 836–841 (1980).
    [Crossref]
  8. J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision, and aging,” Optom. Vis. Sci. 67, 214–229 (1990).
    [Crossref]
  9. B. E. Schefrin, K. Shinomori, and J. S. Werner, “Contributions of neural pathways to age-related losses in chromatic discrimination,” J. Opt. Soc. Am. A 12, 1233–1241 (1995).
    [Crossref]
  10. K. Shinomori, B. E. Schefrin, and J. S. Werner, “Age-related changes in wavelength discrimination,” J. Opt. Soc. Am. A 18, 310–318 (2001).
    [Crossref]
  11. R. A. Weale, “The post-mortem preservation of the transmissivity of the human crystalline lens,” Exp. Eye Res. 41, 655–659 (1985).
    [Crossref]
  12. J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247–258 (1982).
    [Crossref]
  13. J. van de Kraats and D. van Norren, “Optical density of the aging human ocular media in the visible and the UV,” J. Opt. Soc. Am. A 24, 1842–1857 (2007).
    [Crossref]
  14. J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [Crossref]
  15. J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5P (1989).
  16. B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279–1299 (1994).
    [Crossref]
  17. J. L. Barbur, J. Birch, and A. J. Harlow, “Colour vision testing using spatiotemporal luminance masking,” in Colour Vision Deficiencies XI, B. Drum, ed., Doc. Ophthalmol. Proc. Series (Kluwer Academic, 1993), pp. 417–426.
  18. J. L. Barbur and E. Konstantakopoulou, “Changes in color vision with decreasing light level: Separating the effects of normal aging from disease,” J. Opt. Soc. Am. A 29, A27–A35 (2012).
    [Crossref]
  19. C. Feitosa-Santana, M. T. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simoes, M. F. DaCosta, L. C. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Visual Neurosci. 25, 487–491 (2008).
  20. C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Ophthalmic Physiol. Opt. 30, 717–723 (2010).
    [Crossref]
  21. M. O’Neill-Biba, S. Sivaprasad, M. Rodriguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmol. Physiol. Opt. 30, 705–716 (2010).
    [Crossref]
  22. B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: Results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
    [Crossref]
  23. R. Lakowski, “Is the deterioration of colour discrimination with age due to lens or retinal changes?” Farbe 11, 69–84 (1962).
  24. G. Verriest, J. van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).
    [Crossref]
  25. K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001).
    [Crossref]
  26. A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of aging on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
    [Crossref]
  27. G. V. Paramei, “Color discrimination across four life decades assessed by the Cambridge Colour Test,” J. Opt. Soc. Am. A 29, A290–A297 (2012).
    [Crossref]
  28. D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. DeSouza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.
  29. G. V. Paramei and B. Oakley, “Variation of color discrimination across the life span,” J. Opt. Soc. Am. A 31, A375–A384 (2014).
    [Crossref]
  30. A. B. Renner, H. Kanau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci. 21, 827–834 (2004).
  31. H. Jägle, E. Zrenner, H. Krastel, and W. Hart, “Dyschromatopsias associated with neuro-ophthalmic disease,” in Clinical Neuro-Opthalmology, U. Schiefer, H. Wilhelm, and W. Hart, eds. (Springer, 2007), pp. 71–85.
  32. K. Knoblauch and L. T. Maloney, Modeling Psychophysical Data in R (Springer, 2012).
  33. K. Shinomori and J. S. Werner, “Impulse response of an S-cone pathway in the aging visual system,” J. Opt. Soc. Am. A 23, 1570–1577 (2006).
    [Crossref]
  34. K. Shinomori and J. S. Werner, “Aging of human short-wave cone pathways,” Proc. Natl. Acad. Sci. USA 109, 13422–13427 (2012).
    [Crossref]
  35. CIE: International Commission on Illumination Technical Committee 6–15, “A computerized approach to transmission and absorption characteristics of the human eye (incl. Erratum 1),” (2012), http://www.cie.co.at/index.php/Publications/index.php?i_ca_id=882 .
  36. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).
  37. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
    [Crossref]
  38. K. Shinomori and J. S. Werner, “Senescence of the temporal impulse response to a luminous pulse,” Vis. Res. 43, 617–627 (2003).
    [Crossref]
  39. M. Neitz and J. Neitz, “Molecular genetics of human color vision and color vision defects,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), pp. 974–988.
  40. W. D. Wright, “The characteristics of tritanopia,” J. Opt. Soc. Am. 42, 509–522 (1952).
    [Crossref]
  41. D. P. Smith, B. L. Cole, and A. Isaacs, “Congenital tritanopia without neuroretinal disease,” Invest. Ophthalmol. Visual Sci. 12, 608–617 (1973).
  42. C. J. Weitz, Y. Miyake, K. Shinzato, E. Montag, E. Zrenner, L. N. Went, and J. Nathans, “Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin,” Am. J. Hum. Genet. 50, 498–507 (1982).
  43. C. J. Weitz, L. N. Went, and J. Nathans, “Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment,” Am. J. Hum. Genet. 51, 444–446 (1992).
  44. R. C. Baraas, J. Carroll, K. L. Gunther, M. Chung, D. R. Williams, D. H. Foster, and M. Neitz, “Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency,” J. Opt. Soc. Am. A 24, 1438–1447 (2007).
    [Crossref]
  45. R. C. Baraas, L. A. Hagen, E. W. Dees, and M. Neitz, “Substitution of isoleucine for threonine at position 190 of S-opsin causes S-cone-function abnormalities,” Vis. Res. 73, 1–9 (2012).
    [Crossref]
  46. A. König, “Über Blaublindheit,” Sitz. Acad. Wis. 33, 718–731 (1897).
  47. J. François and G. Verriest, “On acquired deficiency of colour vision, with special reference to its detection and classification by means of the tests of Farnsworth,” Vis. Res. 1, 201–219 (1961).
    [Crossref]
  48. “NIST/SEMATECH, e-Handbook of Statistical Methods,” (National Institute of Standards and Technology, Apr.2012), http://www.itl.nist.gov/div898/handbook/ .
  49. J. S. Werner, K. A. Schelble, and M. L. Bieber, “Age-related increases in photopic increment thresholds are not due to an elevation in intrinsic noise,” Color Res. Appl. 26, S48–S52 (2001).
    [Crossref]
  50. K. Knoblauch, F. Saunders, M. Kusuda, R. Hynes, M. Podgor, K. E. Higgins, and F. M. de Monasterio, “Age and illuminance effects in the Farnsworth-Munsell 100-hue test,” Appl. Opt. 26, 1441–1448 (1987).
    [Crossref]

2014 (1)

2012 (4)

J. L. Barbur and E. Konstantakopoulou, “Changes in color vision with decreasing light level: Separating the effects of normal aging from disease,” J. Opt. Soc. Am. A 29, A27–A35 (2012).
[Crossref]

G. V. Paramei, “Color discrimination across four life decades assessed by the Cambridge Colour Test,” J. Opt. Soc. Am. A 29, A290–A297 (2012).
[Crossref]

K. Shinomori and J. S. Werner, “Aging of human short-wave cone pathways,” Proc. Natl. Acad. Sci. USA 109, 13422–13427 (2012).
[Crossref]

R. C. Baraas, L. A. Hagen, E. W. Dees, and M. Neitz, “Substitution of isoleucine for threonine at position 190 of S-opsin causes S-cone-function abnormalities,” Vis. Res. 73, 1–9 (2012).
[Crossref]

2010 (3)

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Ophthalmic Physiol. Opt. 30, 717–723 (2010).
[Crossref]

M. O’Neill-Biba, S. Sivaprasad, M. Rodriguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmol. Physiol. Opt. 30, 705–716 (2010).
[Crossref]

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of aging on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[Crossref]

2008 (1)

C. Feitosa-Santana, M. T. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simoes, M. F. DaCosta, L. C. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Visual Neurosci. 25, 487–491 (2008).

2007 (2)

2006 (1)

2004 (1)

A. B. Renner, H. Kanau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci. 21, 827–834 (2004).

2003 (1)

K. Shinomori and J. S. Werner, “Senescence of the temporal impulse response to a luminous pulse,” Vis. Res. 43, 617–627 (2003).
[Crossref]

2001 (3)

J. S. Werner, K. A. Schelble, and M. L. Bieber, “Age-related increases in photopic increment thresholds are not due to an elevation in intrinsic noise,” Color Res. Appl. 26, S48–S52 (2001).
[Crossref]

K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001).
[Crossref]

K. Shinomori, B. E. Schefrin, and J. S. Werner, “Age-related changes in wavelength discrimination,” J. Opt. Soc. Am. A 18, 310–318 (2001).
[Crossref]

1998 (1)

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: Results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[Crossref]

1996 (1)

J. S. Werner, “Visual problems of the retina during ageing: compensation mechanisms and colour constancy across the life span,” Prog. Retina Eye Res. 15, 621–645 (1996).
[Crossref]

1995 (1)

1994 (1)

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[Crossref]

1993 (1)

C. A. Curcio and D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
[Crossref]

1992 (1)

C. J. Weitz, L. N. Went, and J. Nathans, “Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment,” Am. J. Hum. Genet. 51, 444–446 (1992).

1990 (1)

J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision, and aging,” Optom. Vis. Sci. 67, 214–229 (1990).
[Crossref]

1989 (1)

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5P (1989).

1988 (1)

1987 (2)

1985 (1)

R. A. Weale, “The post-mortem preservation of the transmissivity of the human crystalline lens,” Exp. Eye Res. 41, 655–659 (1985).
[Crossref]

1984 (1)

A. G. Balazsi, J. Rootman, S. M. Drance, M. Schulzer, and G. R. Douglas, “The effect of age on the nerve fiber population of the human optic nerve,” Am. J. Ophthalmol. 97, 760–766 (1984).
[Crossref]

1982 (3)

G. Verriest, J. van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).
[Crossref]

C. J. Weitz, Y. Miyake, K. Shinzato, E. Montag, E. Zrenner, L. N. Went, and J. Nathans, “Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin,” Am. J. Hum. Genet. 50, 498–507 (1982).

J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247–258 (1982).
[Crossref]

1980 (1)

K. O. Devaney and H. A. Johnson, “Neuron loss in the aging visual cortex of man,” J. Gerontol. 35, 836–841 (1980).
[Crossref]

1975 (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[Crossref]

1973 (1)

D. P. Smith, B. L. Cole, and A. Isaacs, “Congenital tritanopia without neuroretinal disease,” Invest. Ophthalmol. Visual Sci. 12, 608–617 (1973).

1962 (1)

R. Lakowski, “Is the deterioration of colour discrimination with age due to lens or retinal changes?” Farbe 11, 69–84 (1962).

1961 (1)

J. François and G. Verriest, “On acquired deficiency of colour vision, with special reference to its detection and classification by means of the tests of Farnsworth,” Vis. Res. 1, 201–219 (1961).
[Crossref]

1955 (1)

H. Brody, “Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex,” J. Comp. Neurol. 102, 511–556 (1955).
[Crossref]

1952 (1)

1897 (1)

A. König, “Über Blaublindheit,” Sitz. Acad. Wis. 33, 718–731 (1897).

Balazsi, A. G.

A. G. Balazsi, J. Rootman, S. M. Drance, M. Schulzer, and G. R. Douglas, “The effect of age on the nerve fiber population of the human optic nerve,” Am. J. Ophthalmol. 97, 760–766 (1984).
[Crossref]

Baraas, R. C.

R. C. Baraas, L. A. Hagen, E. W. Dees, and M. Neitz, “Substitution of isoleucine for threonine at position 190 of S-opsin causes S-cone-function abnormalities,” Vis. Res. 73, 1–9 (2012).
[Crossref]

R. C. Baraas, J. Carroll, K. L. Gunther, M. Chung, D. R. Williams, D. H. Foster, and M. Neitz, “Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency,” J. Opt. Soc. Am. A 24, 1438–1447 (2007).
[Crossref]

Barboni, M. T.

C. Feitosa-Santana, M. T. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simoes, M. F. DaCosta, L. C. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Visual Neurosci. 25, 487–491 (2008).

Barbur, J. L.

J. L. Barbur and E. Konstantakopoulou, “Changes in color vision with decreasing light level: Separating the effects of normal aging from disease,” J. Opt. Soc. Am. A 29, A27–A35 (2012).
[Crossref]

M. O’Neill-Biba, S. Sivaprasad, M. Rodriguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmol. Physiol. Opt. 30, 705–716 (2010).
[Crossref]

K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001).
[Crossref]

J. L. Barbur, J. Birch, and A. J. Harlow, “Colour vision testing using spatiotemporal luminance masking,” in Colour Vision Deficiencies XI, B. Drum, ed., Doc. Ophthalmol. Proc. Series (Kluwer Academic, 1993), pp. 417–426.

Bayer, A.

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of aging on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[Crossref]

Bieber, M. L.

J. S. Werner, K. A. Schelble, and M. L. Bieber, “Age-related increases in photopic increment thresholds are not due to an elevation in intrinsic noise,” Color Res. Appl. 26, S48–S52 (2001).
[Crossref]

Birch, J.

J. L. Barbur, J. Birch, and A. J. Harlow, “Colour vision testing using spatiotemporal luminance masking,” in Colour Vision Deficiencies XI, B. Drum, ed., Doc. Ophthalmol. Proc. Series (Kluwer Academic, 1993), pp. 417–426.

Bonci, D.

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. DeSouza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Bradley, A.

J. S. Werner, B. E. Schefrin, and A. Bradley, “Optics and vision of the aging eye,” in Handbook of Optics, M. Bass, ed., Vol. III of Vision and Optics (McGraw-Hill, 2010), pp. 13.1–13.31.

Brody, H.

H. Brody, “Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex,” J. Comp. Neurol. 102, 511–556 (1955).
[Crossref]

Carroll, J.

Chung, M.

Cole, B. L.

D. P. Smith, B. L. Cole, and A. Isaacs, “Congenital tritanopia without neuroretinal disease,” Invest. Ophthalmol. Visual Sci. 12, 608–617 (1973).

Costa, M. F.

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Ophthalmic Physiol. Opt. 30, 717–723 (2010).
[Crossref]

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. DeSouza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Curcio, C. A.

C. A. Curcio and D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
[Crossref]

DaCosta, M. F.

C. Feitosa-Santana, M. T. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simoes, M. F. DaCosta, L. C. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Visual Neurosci. 25, 487–491 (2008).

de Monasterio, F. M.

Dees, E. W.

R. C. Baraas, L. A. Hagen, E. W. Dees, and M. Neitz, “Substitution of isoleucine for threonine at position 190 of S-opsin causes S-cone-function abnormalities,” Vis. Res. 73, 1–9 (2012).
[Crossref]

DeSouza, J. M.

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. DeSouza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Devaney, K. O.

K. O. Devaney and H. A. Johnson, “Neuron loss in the aging visual cortex of man,” J. Gerontol. 35, 836–841 (1980).
[Crossref]

Douglas, G. R.

A. G. Balazsi, J. Rootman, S. M. Drance, M. Schulzer, and G. R. Douglas, “The effect of age on the nerve fiber population of the human optic nerve,” Am. J. Ophthalmol. 97, 760–766 (1984).
[Crossref]

Drance, S. M.

A. G. Balazsi, J. Rootman, S. M. Drance, M. Schulzer, and G. R. Douglas, “The effect of age on the nerve fiber population of the human optic nerve,” Am. J. Ophthalmol. 97, 760–766 (1984).
[Crossref]

Drucker, D. N.

C. A. Curcio and D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
[Crossref]

Feitosa-Santana, C.

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Ophthalmic Physiol. Opt. 30, 717–723 (2010).
[Crossref]

C. Feitosa-Santana, M. T. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simoes, M. F. DaCosta, L. C. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Visual Neurosci. 25, 487–491 (2008).

Foster, D. H.

François, J.

J. François and G. Verriest, “On acquired deficiency of colour vision, with special reference to its detection and classification by means of the tests of Farnsworth,” Vis. Res. 1, 201–219 (1961).
[Crossref]

Freudenthaler, N.

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: Results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[Crossref]

Gualtieri, M.

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Ophthalmic Physiol. Opt. 30, 717–723 (2010).
[Crossref]

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. DeSouza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Gunther, K. L.

Hagen, L. A.

R. C. Baraas, L. A. Hagen, E. W. Dees, and M. Neitz, “Substitution of isoleucine for threonine at position 190 of S-opsin causes S-cone-function abnormalities,” Vis. Res. 73, 1–9 (2012).
[Crossref]

Harlow, A. J.

J. L. Barbur, J. Birch, and A. J. Harlow, “Colour vision testing using spatiotemporal luminance masking,” in Colour Vision Deficiencies XI, B. Drum, ed., Doc. Ophthalmol. Proc. Series (Kluwer Academic, 1993), pp. 417–426.

Hart, W.

H. Jägle, E. Zrenner, H. Krastel, and W. Hart, “Dyschromatopsias associated with neuro-ophthalmic disease,” in Clinical Neuro-Opthalmology, U. Schiefer, H. Wilhelm, and W. Hart, eds. (Springer, 2007), pp. 71–85.

Higgins, K. E.

Hynes, R.

Isaacs, A.

D. P. Smith, B. L. Cole, and A. Isaacs, “Congenital tritanopia without neuroretinal disease,” Invest. Ophthalmol. Visual Sci. 12, 608–617 (1973).

Jägle, H.

H. Jägle, E. Zrenner, H. Krastel, and W. Hart, “Dyschromatopsias associated with neuro-ophthalmic disease,” in Clinical Neuro-Opthalmology, U. Schiefer, H. Wilhelm, and W. Hart, eds. (Springer, 2007), pp. 71–85.

Johnson, H. A.

K. O. Devaney and H. A. Johnson, “Neuron loss in the aging visual cortex of man,” J. Gerontol. 35, 836–841 (1980).
[Crossref]

Kanau, H.

A. B. Renner, H. Kanau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci. 21, 827–834 (2004).

Knoblauch, K.

K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001).
[Crossref]

K. Knoblauch, F. Saunders, M. Kusuda, R. Hynes, M. Podgor, K. E. Higgins, and F. M. de Monasterio, “Age and illuminance effects in the Farnsworth-Munsell 100-hue test,” Appl. Opt. 26, 1441–1448 (1987).
[Crossref]

K. Knoblauch and L. T. Maloney, Modeling Psychophysical Data in R (Springer, 2012).

Kolle, R.

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: Results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[Crossref]

König, A.

A. König, “Über Blaublindheit,” Sitz. Acad. Wis. 33, 718–731 (1897).

Konstantakopoulou, E.

Krastel, H.

H. Jägle, E. Zrenner, H. Krastel, and W. Hart, “Dyschromatopsias associated with neuro-ophthalmic disease,” in Clinical Neuro-Opthalmology, U. Schiefer, H. Wilhelm, and W. Hart, eds. (Springer, 2007), pp. 71–85.

Kusuda, M.

Lakowski, R.

R. Lakowski, “Is the deterioration of colour discrimination with age due to lens or retinal changes?” Farbe 11, 69–84 (1962).

Lutze, M.

Maloney, L. T.

K. Knoblauch and L. T. Maloney, Modeling Psychophysical Data in R (Springer, 2012).

Miyake, Y.

C. J. Weitz, Y. Miyake, K. Shinzato, E. Montag, E. Zrenner, L. N. Went, and J. Nathans, “Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin,” Am. J. Hum. Genet. 50, 498–507 (1982).

Mollon, J. D.

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: Results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[Crossref]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[Crossref]

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5P (1989).

Montag, E.

C. J. Weitz, Y. Miyake, K. Shinzato, E. Montag, E. Zrenner, L. N. Went, and J. Nathans, “Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin,” Am. J. Hum. Genet. 50, 498–507 (1982).

Nathans, J.

C. J. Weitz, L. N. Went, and J. Nathans, “Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment,” Am. J. Hum. Genet. 51, 444–446 (1992).

C. J. Weitz, Y. Miyake, K. Shinzato, E. Montag, E. Zrenner, L. N. Went, and J. Nathans, “Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin,” Am. J. Hum. Genet. 50, 498–507 (1982).

Neitz, J.

A. B. Renner, H. Kanau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci. 21, 827–834 (2004).

M. Neitz and J. Neitz, “Molecular genetics of human color vision and color vision defects,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), pp. 974–988.

Neitz, M.

R. C. Baraas, L. A. Hagen, E. W. Dees, and M. Neitz, “Substitution of isoleucine for threonine at position 190 of S-opsin causes S-cone-function abnormalities,” Vis. Res. 73, 1–9 (2012).
[Crossref]

R. C. Baraas, J. Carroll, K. L. Gunther, M. Chung, D. R. Williams, D. H. Foster, and M. Neitz, “Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency,” J. Opt. Soc. Am. A 24, 1438–1447 (2007).
[Crossref]

A. B. Renner, H. Kanau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci. 21, 827–834 (2004).

M. Neitz and J. Neitz, “Molecular genetics of human color vision and color vision defects,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), pp. 974–988.

Nishi, M.

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Ophthalmic Physiol. Opt. 30, 717–723 (2010).
[Crossref]

O’Neill-Biba, M.

M. O’Neill-Biba, S. Sivaprasad, M. Rodriguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmol. Physiol. Opt. 30, 705–716 (2010).
[Crossref]

Oakley, B.

Oiwa, N. N.

C. Feitosa-Santana, M. T. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simoes, M. F. DaCosta, L. C. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Visual Neurosci. 25, 487–491 (2008).

Paramei, G. V.

G. V. Paramei and B. Oakley, “Variation of color discrimination across the life span,” J. Opt. Soc. Am. A 31, A375–A384 (2014).
[Crossref]

G. V. Paramei, “Color discrimination across four life decades assessed by the Cambridge Colour Test,” J. Opt. Soc. Am. A 29, A290–A297 (2012).
[Crossref]

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Ophthalmic Physiol. Opt. 30, 717–723 (2010).
[Crossref]

C. Feitosa-Santana, M. T. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simoes, M. F. DaCosta, L. C. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Visual Neurosci. 25, 487–491 (2008).

Paulus, W.

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of aging on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[Crossref]

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: Results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[Crossref]

Peterzell, D. H.

J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision, and aging,” Optom. Vis. Sci. 67, 214–229 (1990).
[Crossref]

Podgor, M.

Pokorny, J.

J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[Crossref]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[Crossref]

Reffin, J. P.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[Crossref]

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5P (1989).

Regan, B. C.

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: Results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[Crossref]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[Crossref]

Renner, A. B.

A. B. Renner, H. Kanau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci. 21, 827–834 (2004).

Rodrigues, A. R.

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. DeSouza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Rodriguez-Carmona, M.

M. O’Neill-Biba, S. Sivaprasad, M. Rodriguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmol. Physiol. Opt. 30, 705–716 (2010).
[Crossref]

Rootman, J.

A. G. Balazsi, J. Rootman, S. M. Drance, M. Schulzer, and G. R. Douglas, “The effect of age on the nerve fiber population of the human optic nerve,” Am. J. Ophthalmol. 97, 760–766 (1984).
[Crossref]

Saunders, F.

Scheetz, A. J.

J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision, and aging,” Optom. Vis. Sci. 67, 214–229 (1990).
[Crossref]

Schefrin, B. E.

Schelble, K. A.

J. S. Werner, K. A. Schelble, and M. L. Bieber, “Age-related increases in photopic increment thresholds are not due to an elevation in intrinsic noise,” Color Res. Appl. 26, S48–S52 (2001).
[Crossref]

Schulzer, M.

A. G. Balazsi, J. Rootman, S. M. Drance, M. Schulzer, and G. R. Douglas, “The effect of age on the nerve fiber population of the human optic nerve,” Am. J. Ophthalmol. 97, 760–766 (1984).
[Crossref]

Schwarz, G.

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of aging on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[Crossref]

Shinomori, K.

Shinzato, K.

C. J. Weitz, Y. Miyake, K. Shinzato, E. Montag, E. Zrenner, L. N. Went, and J. Nathans, “Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin,” Am. J. Hum. Genet. 50, 498–507 (1982).

Silveira, L. C.

C. Feitosa-Santana, M. T. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simoes, M. F. DaCosta, L. C. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Visual Neurosci. 25, 487–491 (2008).

Silveira, L. C. L.

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. DeSouza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Simoes, A. L.

C. Feitosa-Santana, M. T. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simoes, M. F. DaCosta, L. C. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Visual Neurosci. 25, 487–491 (2008).

Sivaprasad, S.

M. O’Neill-Biba, S. Sivaprasad, M. Rodriguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmol. Physiol. Opt. 30, 705–716 (2010).
[Crossref]

Smith, D. P.

D. P. Smith, B. L. Cole, and A. Isaacs, “Congenital tritanopia without neuroretinal disease,” Invest. Ophthalmol. Visual Sci. 12, 608–617 (1973).

Smith, V. C.

J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[Crossref]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[Crossref]

Steele, V. G.

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

Uvijls, A.

G. Verriest, J. van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).
[Crossref]

van de Kraats, J.

van Laethem, J.

G. Verriest, J. van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).
[Crossref]

van Norren, D.

Ventura, D. F.

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Ophthalmic Physiol. Opt. 30, 717–723 (2010).
[Crossref]

C. Feitosa-Santana, M. T. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simoes, M. F. DaCosta, L. C. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Visual Neurosci. 25, 487–491 (2008).

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. DeSouza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Verriest, G.

G. Verriest, J. van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).
[Crossref]

J. François and G. Verriest, “On acquired deficiency of colour vision, with special reference to its detection and classification by means of the tests of Farnsworth,” Vis. Res. 1, 201–219 (1961).
[Crossref]

Vital-Durand, F.

K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001).
[Crossref]

Weale, R. A.

R. A. Weale, “The post-mortem preservation of the transmissivity of the human crystalline lens,” Exp. Eye Res. 41, 655–659 (1985).
[Crossref]

Weitz, C. J.

C. J. Weitz, L. N. Went, and J. Nathans, “Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment,” Am. J. Hum. Genet. 51, 444–446 (1992).

C. J. Weitz, Y. Miyake, K. Shinzato, E. Montag, E. Zrenner, L. N. Went, and J. Nathans, “Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin,” Am. J. Hum. Genet. 50, 498–507 (1982).

Went, L. N.

C. J. Weitz, L. N. Went, and J. Nathans, “Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment,” Am. J. Hum. Genet. 51, 444–446 (1992).

C. J. Weitz, Y. Miyake, K. Shinzato, E. Montag, E. Zrenner, L. N. Went, and J. Nathans, “Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin,” Am. J. Hum. Genet. 50, 498–507 (1982).

Werner, A.

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of aging on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[Crossref]

Werner, J. S.

K. Shinomori and J. S. Werner, “Aging of human short-wave cone pathways,” Proc. Natl. Acad. Sci. USA 109, 13422–13427 (2012).
[Crossref]

K. Shinomori and J. S. Werner, “Impulse response of an S-cone pathway in the aging visual system,” J. Opt. Soc. Am. A 23, 1570–1577 (2006).
[Crossref]

A. B. Renner, H. Kanau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci. 21, 827–834 (2004).

K. Shinomori and J. S. Werner, “Senescence of the temporal impulse response to a luminous pulse,” Vis. Res. 43, 617–627 (2003).
[Crossref]

K. Shinomori, B. E. Schefrin, and J. S. Werner, “Age-related changes in wavelength discrimination,” J. Opt. Soc. Am. A 18, 310–318 (2001).
[Crossref]

J. S. Werner, K. A. Schelble, and M. L. Bieber, “Age-related increases in photopic increment thresholds are not due to an elevation in intrinsic noise,” Color Res. Appl. 26, S48–S52 (2001).
[Crossref]

J. S. Werner, “Visual problems of the retina during ageing: compensation mechanisms and colour constancy across the life span,” Prog. Retina Eye Res. 15, 621–645 (1996).
[Crossref]

B. E. Schefrin, K. Shinomori, and J. S. Werner, “Contributions of neural pathways to age-related losses in chromatic discrimination,” J. Opt. Soc. Am. A 12, 1233–1241 (1995).
[Crossref]

J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision, and aging,” Optom. Vis. Sci. 67, 214–229 (1990).
[Crossref]

J. S. Werner and V. G. Steele, “Sensitivity of human foveal color mechanisms throughout the life span,” J. Opt. Soc. Am. A 5, 2122–2130 (1988).
[Crossref]

J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247–258 (1982).
[Crossref]

J. S. Werner, B. E. Schefrin, and A. Bradley, “Optics and vision of the aging eye,” in Handbook of Optics, M. Bass, ed., Vol. III of Vision and Optics (McGraw-Hill, 2010), pp. 13.1–13.31.

Williams, D. R.

Wolf, J. E.

M. O’Neill-Biba, S. Sivaprasad, M. Rodriguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmol. Physiol. Opt. 30, 705–716 (2010).
[Crossref]

Wright, W. D.

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

Zrenner, E.

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of aging on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[Crossref]

C. J. Weitz, Y. Miyake, K. Shinzato, E. Montag, E. Zrenner, L. N. Went, and J. Nathans, “Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin,” Am. J. Hum. Genet. 50, 498–507 (1982).

H. Jägle, E. Zrenner, H. Krastel, and W. Hart, “Dyschromatopsias associated with neuro-ophthalmic disease,” in Clinical Neuro-Opthalmology, U. Schiefer, H. Wilhelm, and W. Hart, eds. (Springer, 2007), pp. 71–85.

Am. J. Hum. Genet. (2)

C. J. Weitz, Y. Miyake, K. Shinzato, E. Montag, E. Zrenner, L. N. Went, and J. Nathans, “Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin,” Am. J. Hum. Genet. 50, 498–507 (1982).

C. J. Weitz, L. N. Went, and J. Nathans, “Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment,” Am. J. Hum. Genet. 51, 444–446 (1992).

Am. J. Ophthalmol. (2)

A. G. Balazsi, J. Rootman, S. M. Drance, M. Schulzer, and G. R. Douglas, “The effect of age on the nerve fiber population of the human optic nerve,” Am. J. Ophthalmol. 97, 760–766 (1984).
[Crossref]

G. Verriest, J. van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).
[Crossref]

Ann. Neurol. (1)

C. A. Curcio and D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
[Crossref]

Appl. Opt. (2)

Color Res. Appl. (1)

J. S. Werner, K. A. Schelble, and M. L. Bieber, “Age-related increases in photopic increment thresholds are not due to an elevation in intrinsic noise,” Color Res. Appl. 26, S48–S52 (2001).
[Crossref]

Exp. Eye Res. (1)

R. A. Weale, “The post-mortem preservation of the transmissivity of the human crystalline lens,” Exp. Eye Res. 41, 655–659 (1985).
[Crossref]

Farbe (1)

R. Lakowski, “Is the deterioration of colour discrimination with age due to lens or retinal changes?” Farbe 11, 69–84 (1962).

Invest. Ophthalmol. Visual Sci. (1)

D. P. Smith, B. L. Cole, and A. Isaacs, “Congenital tritanopia without neuroretinal disease,” Invest. Ophthalmol. Visual Sci. 12, 608–617 (1973).

J. Comp. Neurol. (1)

H. Brody, “Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex,” J. Comp. Neurol. 102, 511–556 (1955).
[Crossref]

J. Gerontol. (1)

K. O. Devaney and H. A. Johnson, “Neuron loss in the aging visual cortex of man,” J. Gerontol. 35, 836–841 (1980).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (9)

R. C. Baraas, J. Carroll, K. L. Gunther, M. Chung, D. R. Williams, D. H. Foster, and M. Neitz, “Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency,” J. Opt. Soc. Am. A 24, 1438–1447 (2007).
[Crossref]

J. van de Kraats and D. van Norren, “Optical density of the aging human ocular media in the visible and the UV,” J. Opt. Soc. Am. A 24, 1842–1857 (2007).
[Crossref]

J. L. Barbur and E. Konstantakopoulou, “Changes in color vision with decreasing light level: Separating the effects of normal aging from disease,” J. Opt. Soc. Am. A 29, A27–A35 (2012).
[Crossref]

B. E. Schefrin, K. Shinomori, and J. S. Werner, “Contributions of neural pathways to age-related losses in chromatic discrimination,” J. Opt. Soc. Am. A 12, 1233–1241 (1995).
[Crossref]

K. Shinomori, B. E. Schefrin, and J. S. Werner, “Age-related changes in wavelength discrimination,” J. Opt. Soc. Am. A 18, 310–318 (2001).
[Crossref]

J. S. Werner and V. G. Steele, “Sensitivity of human foveal color mechanisms throughout the life span,” J. Opt. Soc. Am. A 5, 2122–2130 (1988).
[Crossref]

G. V. Paramei, “Color discrimination across four life decades assessed by the Cambridge Colour Test,” J. Opt. Soc. Am. A 29, A290–A297 (2012).
[Crossref]

G. V. Paramei and B. Oakley, “Variation of color discrimination across the life span,” J. Opt. Soc. Am. A 31, A375–A384 (2014).
[Crossref]

K. Shinomori and J. S. Werner, “Impulse response of an S-cone pathway in the aging visual system,” J. Opt. Soc. Am. A 23, 1570–1577 (2006).
[Crossref]

J. Physiol. (1)

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5P (1989).

Ophthalmic Physiol. Opt. (1)

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Ophthalmic Physiol. Opt. 30, 717–723 (2010).
[Crossref]

Ophthalmol. Physiol. Opt. (1)

M. O’Neill-Biba, S. Sivaprasad, M. Rodriguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmol. Physiol. Opt. 30, 705–716 (2010).
[Crossref]

Optom. Vis. Sci. (1)

J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision, and aging,” Optom. Vis. Sci. 67, 214–229 (1990).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

K. Shinomori and J. S. Werner, “Aging of human short-wave cone pathways,” Proc. Natl. Acad. Sci. USA 109, 13422–13427 (2012).
[Crossref]

Prog. Retina Eye Res. (1)

J. S. Werner, “Visual problems of the retina during ageing: compensation mechanisms and colour constancy across the life span,” Prog. Retina Eye Res. 15, 621–645 (1996).
[Crossref]

Sitz. Acad. Wis. (1)

A. König, “Über Blaublindheit,” Sitz. Acad. Wis. 33, 718–731 (1897).

Vis. Res. (7)

J. François and G. Verriest, “On acquired deficiency of colour vision, with special reference to its detection and classification by means of the tests of Farnsworth,” Vis. Res. 1, 201–219 (1961).
[Crossref]

R. C. Baraas, L. A. Hagen, E. W. Dees, and M. Neitz, “Substitution of isoleucine for threonine at position 190 of S-opsin causes S-cone-function abnormalities,” Vis. Res. 73, 1–9 (2012).
[Crossref]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[Crossref]

K. Shinomori and J. S. Werner, “Senescence of the temporal impulse response to a luminous pulse,” Vis. Res. 43, 617–627 (2003).
[Crossref]

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: Results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[Crossref]

K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001).
[Crossref]

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of aging on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[Crossref]

Vision Res. (1)

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[Crossref]

Visual Neurosci. (2)

C. Feitosa-Santana, M. T. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simoes, M. F. DaCosta, L. C. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Visual Neurosci. 25, 487–491 (2008).

A. B. Renner, H. Kanau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci. 21, 827–834 (2004).

Other (9)

H. Jägle, E. Zrenner, H. Krastel, and W. Hart, “Dyschromatopsias associated with neuro-ophthalmic disease,” in Clinical Neuro-Opthalmology, U. Schiefer, H. Wilhelm, and W. Hart, eds. (Springer, 2007), pp. 71–85.

K. Knoblauch and L. T. Maloney, Modeling Psychophysical Data in R (Springer, 2012).

CIE: International Commission on Illumination Technical Committee 6–15, “A computerized approach to transmission and absorption characteristics of the human eye (incl. Erratum 1),” (2012), http://www.cie.co.at/index.php/Publications/index.php?i_ca_id=882 .

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. DeSouza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

J. L. Barbur, J. Birch, and A. J. Harlow, “Colour vision testing using spatiotemporal luminance masking,” in Colour Vision Deficiencies XI, B. Drum, ed., Doc. Ophthalmol. Proc. Series (Kluwer Academic, 1993), pp. 417–426.

J. S. Werner, B. E. Schefrin, and A. Bradley, “Optics and vision of the aging eye,” in Handbook of Optics, M. Bass, ed., Vol. III of Vision and Optics (McGraw-Hill, 2010), pp. 13.1–13.31.

M. Neitz and J. Neitz, “Molecular genetics of human color vision and color vision defects,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), pp. 974–988.

“NIST/SEMATECH, e-Handbook of Statistical Methods,” (National Institute of Standards and Technology, Apr.2012), http://www.itl.nist.gov/div898/handbook/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. R/G and Y settings of Rayleigh matches on the anomaloscope based on the mean of three to five free-matching trials for 194 subjects. (Top panel) R/G versus Y settings. (Bottom left) Mean of R/G setting with the range between maximum and minimum matches for observers who were not classified as normal trichromats. (Bottom right) Mean of Y setting with range. Protanomalous (triangles) and deuteranomalous (squares) subjects were differentiated from color normals (circles). Bottom panels also show data of one protanopic (filled triangles) and one deuteranopic (filled squares) subject in this study. Open and gray symbols denote the data of observers younger and older than 60 years, respectively. R/G and Y settings were the means of all satisfied matches for each observer. Two larger open squares (observer #19 and #24) denote “mild anomalous subjects” as classified by the CCT (as explained elsewhere). The square with gray circle (#25) denotes “the subject showing high thresholds” on the CCT (see Fig. 6 and text for details). Diagonal and horizontal dashed lines in the top panel denote auxiliary lines by the anomaloscope manufacturer for separating protanopes (protanomaly) and deuteranopes (deuteranomaly), respectively. Solid vertical and horizontal lines denote the mean of all normal observers. Vertical dotted lines denote R/G settings corresponding to anomalous quotients (AQ) of 1.6 and 0.6. Vertical dashed lines in the bottom right panel denote the manufacturer’s deuteranomaly line. Numbers at the top of the panels denote AQs.
Fig. 2.
Fig. 2. (a) Protan (red), deutan (green), and tritan (blue) vector directions for 20-, 60-, and 90-year-old “standard observers” in u v chromaticity coordinates, starting from the shifted white background, calculated on the basis of age-related changes in the ocular media. The gray inset denotes the portion of the chromaticity diagram shown in panels P, D, and T depicting magnified color confusion lines (colored lines) and the average of measured vector lengths (black lines) of protan (P), deutan (D), and tritan (T) vectors for each decade ( ± 5 years, but the 80-year-old group includes one 88-year-old observer), multiplied by a factor of 5 for clarity. Dotted lines denote confusion lines starting at white for an 80-year-old standard observer (not shown in Fig. 2(a)). These age-dependent vectors originate from different backgrounds and have a different slope than the nominal CCT color confusion lines because chromaticities of the white background and the targets are shifted by age-related changes in the ocular media, calculated from the bilinear model. The inset in panel T shows an example of effective stimulation (tritan vector) and residual stimulation (in the case of protan vector) caused by the original (uncorrected) tritan test.
Fig. 3.
Fig. 3. Protan (P), deutan (D), and tritan (T) CCT vector threshold data plotted in separate panels as a function of age. The solid lines were fitted by linear regressions. Note that the tritan data were fitted with two linear regressions as suggested by modeling. In each panel, dotted and dashed lines represent the mean + 1 SD and + 2 SD , respectively (see text for details). The thick solid horizontal line represents the maximum threshold for each vector expected for a normal trichromat, as given by the developers of the CCT (100 for protan and deutan vectors and 150 for the tritan vector). Note the different y -axis range on the tritan plot.
Fig. 4.
Fig. 4. (a) Correction coefficients plotted as a function of age to calculate the effective vector lengths (VLs) of the protan (red curves), deutan (green curves), and tritan (blue curves) vectors (Vs) on the protan, deutan, and tritan confusion lines. Lines denote coefficients calculated from the linear and bilinear model. The coefficients for the tritan vector length are the mean of two coefficients each associated with the protan or deutan vectors. (Panel T) Original tritan vector length data (filled circles) and corrected tritan vector length data (open circles) modified by the coefficients shown in Fig. 4(a). Black and gray solid lines denote the best bilinear fits of the original and corrected tritan vector lengths, respectively.
Fig. 5.
Fig. 5. (a) “Residual” stimulation coefficients as a function of age to calculate the effective vector lengths (VLs) of the protan (red curves), deutan (green curves) and tritan (blue and black curves) vectors on the protan, deutan, and tritan confusion lines. These “residual” stimulations represent excitation of untargeted cone types caused by vector direction errors in the CCT. Functions denote coefficients calculated by the bilinear model of the ocular media density. (Panels P and D) Comparison of protan vector length (panel P) and deutan vector length (panel D) between the mean, + 1 and + 2 SDs of original protan and deutan vector lengths, as shown in Fig. 3, and the “residual” protan and deutan vector lengths (open symbols) calculated by uncorrected (misdirection) tritan vector length with the bi-linear model (see text for details). Gray circles denote the “residual” vector length data that are longer than the original protan and deutan vector length data for each individual observer.
Fig. 6.
Fig. 6. Protan (P), deutan (D), and tritan (T) vector lengths for protanomalous and deuteranomalous subjects as a function of age. The filled triangles and open squares represent the protanomalous and deuteranomalous subjects, respectively. The solid lines are the normal mean, with dotted and dashed functions representing + 1 and + 2 SDs (as in Fig. 3). The thick solid horizontal lines represent the thresholds for each vector, as given by the developers of the CCT. For cases in which the protan or deutan vector measurement was not possible, the vector length was set as 1100 (four deuteranomalous subjects’ data points were plotted at 1080 or 1050 for clarity in the plot). Data points enclosed by a gray circle denote the deuteranomalous observer (discussed in the text).
Fig. 7.
Fig. 7. Comparison between protan and deutan vector lengths for protanomalous (triangles; left panel), deuteranomalous (squares; middle panel), and normal subjects (circles; right panel) classified by Rayleigh matches. Open and gray symbols denote the data of observers younger and older than 60 years, respectively. The vector length of 1100 means that the protan or deutan measurement was not possible (one deuteranomalous subject’s data points were plotted at 1080 for clarity).
Fig. 8.
Fig. 8. Ratio of measured thresholds (vector lengths) calculated from tolerance limits (as in Table 2) for protan (red triangles), deutan (green squares), and tritan (blue circles) tests and ratio of ocular media density for L- (red curve), M- (green curve), and S- (blue curve) cones calculated with the bilinear model. These ratios are based on the youngest age group (16–30 observer group) and 20-year-old standard observer (see text for details). Horizontal error bars denote standard deviations of age in each observer group of tolerance limits.

Tables (2)

Tables Icon

Table 1. Vector Length for Three Ages with Linear and Bilinear Models a

Tables Icon

Table 2. Tolerance Limits of Vector Length of Thresholds a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

y = a + b x ,
y = m ( x a ) + b ( m = c ( x a ) , d ( x > a ) ) .
T L , B L ( λ , A ) = { T L 1 ( λ ) [ 1 + 0.02 ( A 32 ) ] + T L 2 ( λ ) A < 60 , T L 1 ( λ ) [ 1.56 + 0.0667 ( A 60 ) ] + T L 2 ( λ ) A > 60 ,
X i ( A ) = k λ { L E i ( λ ) · I i · x ¯ ( λ ) · 10 { T L ( λ , 20 ) T L ( λ , A ) } } Y i ( A ) = k λ { L E i ( λ ) · I i · y ¯ ( λ ) · 10 { T L ( λ , 20 ) T L ( λ , A ) } } Z i ( A ) = k λ { L E i ( λ ) · I i · z ¯ ( λ ) · 10 { T L ( λ , 20 ) T L ( λ , A ) } } } ( i = R , G , B ) ,
X s c = x s c y s c L s c = i { X i ( 20 ) } = i { x i y i Y i ( 20 ) } Y s c = L s c = i { Y i ( 20 ) } Z s c = 1 x s c y s c y s c L s c = i { Z i ( 20 ) } = i { ( 1 x i y i ) y i Y i ( 20 ) } } ( i = R , G , B ) .
Δ P m , Cornea ( A ) = 10 [ T L , m ( A ) ] · Δ P m , Retina ( A ) ( m = 1,2 , 3 ) [ ( P 1 , P 2 , P 3 ) = ( L , M , S ) , ( T L , 1 , T L , 2 , T L , 3 ) = ( T L , Lcone , T L , Mcone , T L , Scone ) ] .
( Δ P m . cornea ( A ) / Δ P m , Cornea ( 20 ) ) = ( 10 [ T L , m ( A ) / 10 [ T L , m ( 20 ) ] ) · ( Δ P m , Retina ( A ) / Δ P m , Retina ( 20 ) ) .

Metrics