Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Light-field and holographic three-dimensional displays [Invited]

Not Accessible

Your library or personal account may give you access

Abstract

A perfect three-dimensional (3D) display that satisfies all depth cues in human vision is possible if a light field can be reproduced exactly as it appeared when it emerged from a real object. The light field can be generated based on either light ray or wavefront reconstruction, with the latter known as holography. This paper first provides an overview of the advances of ray-based and wavefront-based 3D display technologies, including integral photography and holography, and the integration of those technologies with digital information systems. Hardcopy displays have already been used in some applications, whereas the electronic display of a light field is under active investigation. Next, a fundamental question in this technology field is addressed: what is the difference between ray-based and wavefront-based methods for light-field 3D displays? In considering this question, it is of particular interest to look at the technology of holographic stereograms. The phase information in holography contributes to the resolution of a reconstructed image, especially for deep 3D images. Moreover, issues facing the electronic display system of light fields are discussed, including the resolution of the spatial light modulator, the computational techniques of holography, and the speckle in holographic images.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Advances in three-dimensional integral imaging: sensing, display, and applications [Invited]

Xiao Xiao, Bahram Javidi, Manuel Martinez-Corral, and Adrian Stern
Appl. Opt. 52(4) 546-560 (2013)

3D touchable holographic light-field display

Masahiro Yamaguchi and Ryo Higashida
Appl. Opt. 55(3) A178-A183 (2016)

Binocular holographic three-dimensional display using a single spatial light modulator and a grating

Yanfeng Su, Zhijian Cai, Quan Liu, Lingyan Shi, Feng Zhou, and Jianhong Wu
J. Opt. Soc. Am. A 35(8) 1477-1486 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved