Abstract

The paper shows how to implement the generalized Harvey–Shack (GHS) method for isotropic rough surfaces discretized in a polar coordinate system and approximated using Fourier series. This is particularly relevant for the use of the GHS method as a boundary condition for radiative transfer problems in slab geometries, where the discrete ordinates method can be applied to solve the problem. Furthermore, such an implementation is a more convenient discretization of the problem than the traditional direction cosine space that has its strengths in analytical problems and intuitive understanding (mainly due to its translation invariance). A computer implementation of scattering from a Gaussian rough surface with Gaussian autocovariance written in Python is included at the end of the paper.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles

Andrey Krywonos, James E. Harvey, and Narak Choi
J. Opt. Soc. Am. A 28(6) 1121-1138 (2011)

Modeling of light scattering in different regimes of surface roughness

Sven Schröder, Angela Duparré, Luisa Coriand, Andreas Tünnermann, Dayana H. Penalver, and James E. Harvey
Opt. Express 19(10) 9820-9835 (2011)

Asymptotic theory for optically thick layers: application to the discrete ordinates method

Teruyuki Nakajima and Michael D. King
Appl. Opt. 31(36) 7669-7683 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription