Abstract

We present an algorithm implemented in a MATLAB toolbox that is able to compute the wave propagation of coherent visible light through macroscopic lenses. The mathematical operations that complete the status at the end of the first paper of this sequence, where only limited configurations of the propagation direction were allowed toward arbitrarily directed input beam computations, are provided. With their help, high numerical aperture (NA) field tracing is made possible that is based on fast Fourier routines and is Maxwell exact in the limit of macroscopic structures and large curvature radii, including reflection and transmission. Whereas the curvature-dependent terms in the Helmholtz equation are under analytical control through the first perturbation order in the curvature, they are only included in the propagation distance in the current investigation for the sake of reasonable time consumption. We give a number of examples that demonstrate the strengths of our approach, describe essential differences from other approaches that were not obvious when Paper 1 was written, and list a number of drawbacks and possible simplifications to overcome them.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generalized propagation of light through optical systems. I. Mathematical basics

Manuel Tessmer and Herbert Gross
J. Opt. Soc. Am. A 32(2) 258-266 (2015)

Ray-based method for simulating cascaded diffraction in high-numerical-aperture systems

Marco Mout, Andreas Flesch, Michael Wick, Florian Bociort, Joerg Petschulat, and Paul Urbach
J. Opt. Soc. Am. A 35(8) 1356-1367 (2018)

Deflectometric method for the measurement of user power for ophthalmic lenses

Javier Vargas, José A. Gómez-Pedrero, José Alonso, and Juan A. Quiroga
Appl. Opt. 49(27) 5125-5132 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (60)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription