Abstract

The information of fluorophore concentration variation (FCV) has the potential for drug development and tumor studies, but the reconstruction of FCV is time-consuming in dynamic fluorescence molecular tomography (DFMT). In this paper, a time-efficient reconstruction method for FCV is presented. The system equation of this method is derived from the derivation of the diffusion equation, and its size does not change with the number of frames. The computational time can be significantly reduced by using this method because the images of different frames are reconstructed separately. Simulations and phantom experiments are performed to validate the performance of the proposed method. The results show that compared with the previous method, the proposed method can obtain better results and consumes less computational time with the same number of iterations. In addition, the time consumption in a single iteration of the proposed method increases much slower with the number of frames.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reconstruction of in vivo fluorophore concentration variation with structural priors and smooth penalty

Xuanxuan Zhang, Jiulou Zhang, and Jianwen Luo
Appl. Opt. 55(10) 2732-2740 (2016)

Non-stationary reconstruction for dynamic fluorescence molecular tomography with extended kalman filter

Xin Liu, Hongkai Wang, and Zhuangzhi Yan
Biomed. Opt. Express 7(11) 4527-4542 (2016)

4-D reconstruction of fluorescence molecular tomography using re-assembled measurement data

Xin Liu, Xiaowe He, Zhuangzhi Yan, and Hongbing Lu
Biomed. Opt. Express 6(6) 1963-1976 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription