Abstract

Transverse chromatic aberration (TCA) is one of the largest optical errors affecting the peripheral image quality in the human eye. However, the effect of chromatic aberrations on our peripheral vision is largely unknown. This study investigates the effect of prism-induced horizontal TCA on vision, in the central as well as in the 20° nasal visual field, for four subjects. Additionally, the magnitude of induced TCA (in minutes of arc) was measured subjectively in the fovea with a Vernier alignment method. During all measurements, the monochromatic optical errors of the eye were compensated for by adaptive optics. The average reduction in foveal grating resolution was about 0.032±0.005logMAR/arcmin of TCA (mean±std). For peripheral grating detection, the reduction was 0.057±0.012logMAR/arcmin. This means that the prismatic effect of highly dispersive spectacles may reduce the ability to detect objects in the peripheral visual field.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Peripheral resolution and contrast sensitivity: effects of monochromatic and chromatic aberrations

Abinaya Priya Venkataraman, Petros Papadogiannis, Dmitry Romashchenko, Simon Winter, Peter Unsbo, and Linda Lundström
J. Opt. Soc. Am. A 36(4) B52-B57 (2019)

Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes

Maurice Rynders, Bruce Lidkea, William Chisholm, and Larry N. Thibos
J. Opt. Soc. Am. A 12(10) 2348-2357 (1995)

Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye

Linda Lundström, Silvestre Manzanera, Pedro M. Prieto, Diego B. Ayala, Nicolas Gorceix, Jörgen Gustafsson, Peter Unsbo, and Pablo Artal
Opt. Express 15(20) 12654-12661 (2007)

References

  • View by:
  • |
  • |
  • |

  1. F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
    [Crossref]
  2. G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
    [Crossref]
  3. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
    [Crossref]
  4. E. L. Smith, “Prentice award lecture 2010: a case for peripheral optical treatment strategies for myopia,” Optom. Vis. Sci. 88, 1029–1044 (2011).
    [Crossref]
  5. M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
    [Crossref]
  6. B. Jaeken, L. Lundström, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
    [Crossref]
  7. Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987).
    [Crossref]
  8. L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
    [Crossref]
  9. L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
    [Crossref]
  10. R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52, 318–323 (2011).
    [Crossref]
  11. C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300, 5–25 (1990).
    [Crossref]
  12. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [Crossref]
  13. L. N. Thibos, D. J. Walsh, and F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987).
    [Crossref]
  14. P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
    [Crossref]
  15. L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
    [Crossref]
  16. R. S. Anderson and F. A. Ennis, “Foveal and peripheral thresholds for detection and resolution of vanishing optotype tumbling E’s,” Vision Res. 39, 4141–4144 (1999).
    [Crossref]
  17. F. E. Cheney, L. N. Thibos, and A. Bradley, “Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision,” Ophthalmic Physiol. Opt. 35, 70–80 (2015).
    [Crossref]
  18. A. El-Kadouri and W. N. Charman, “Chromatic aberration in prismatic corrections,” in Transactions of the First International Congress, The Frontiers of Optometry (British College of Ophthalmic Opticians,1984), Vol. 2, pp. 154–160.
  19. C. Y. Tang and W. N. Charman, “Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear,” Ophthalmic Physiol. Opt. 12, 340–349 (1992).
    [Crossref]
  20. C. M. R. Fonseka and H. Obstfeld, “Effect of the constringence of afocal prismatic lenses on monocular acuity and contrast sensitivity,” Ophthalmic Physiol. Opt. 15, 73–78 (1995).
    [Crossref]
  21. J. Faubert, P. Simonet, and J. Gresset, “Effects of induced transverse chromatic aberration from an afocal prismatic lens on spatio-temporal sensitivity,” Ophthalmic Physiol. Opt. 19, 336–346 (1999).
    [Crossref]
  22. D. Meslin and G. Obrecht, “Effect of chromatic dispersion of a lens on visual acuity,” Am. J. Optom. Physiol. Opt. 65, 25–28 (1988).
    [Crossref]
  23. E. Kampmeier, “Die neue Airwear–Brillenglasgeneration - Einfluss der chromatischen Aberration auf die Sehschärfe,” Optometrie 1, 10–12 (1999).
  24. R. Rosén, L. Lundström, and P. Unsbo, “Adaptive optics for peripheral vision,” J. Mod. Opt. 59, 1064–1070 (2012).
    [Crossref]
  25. D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vision 10, 433–436 (1997).
    [Crossref]
  26. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995).
    [Crossref]
  27. L. L. Kontsevich and C. W. Tyler, “Bayesian adaptive estimation of psychometric slope and threshold,” Vision Res. 39, 2729–2737 (1999).
    [Crossref]
  28. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
    [Crossref]
  29. This number was obtained by assuming a thin lens located 14 mm in front of the eye. Light that reaches the eye in 20° off axis is entering the lens 5 mm away from the optical center. In this location, the lens will give a prismatic effect of 5  Δ. If the lens is made of high dispersive material, such as the prisms in this study, 5  Δ is equivalent to inducing about 2.5 arcmin of TCA, which translates into 0.14 logMAR (2.5  arcmin*0.057  logMAR/arcmin).
  30. J. Gustafsson and P. Unsbo, “Eccentric correction for off-axis vision in central visual field loss,” Optom. Vision Sci. 80, 535–541 (2003).
    [Crossref]
  31. L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vision Sci. 84, 1046–1052 (2007).
    [Crossref]
  32. D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
    [Crossref]
  33. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of the ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
    [Crossref]
  34. P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
    [Crossref]
  35. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
    [Crossref]

2015 (1)

F. E. Cheney, L. N. Thibos, and A. Bradley, “Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision,” Ophthalmic Physiol. Opt. 35, 70–80 (2015).
[Crossref]

2012 (1)

R. Rosén, L. Lundström, and P. Unsbo, “Adaptive optics for peripheral vision,” J. Mod. Opt. 59, 1064–1070 (2012).
[Crossref]

2011 (3)

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52, 318–323 (2011).
[Crossref]

E. L. Smith, “Prentice award lecture 2010: a case for peripheral optical treatment strategies for myopia,” Optom. Vis. Sci. 88, 1029–1044 (2011).
[Crossref]

B. Jaeken, L. Lundström, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
[Crossref]

2007 (2)

2004 (1)

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[Crossref]

2003 (1)

J. Gustafsson and P. Unsbo, “Eccentric correction for off-axis vision in central visual field loss,” Optom. Vision Sci. 80, 535–541 (2003).
[Crossref]

2002 (1)

1999 (5)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]

L. L. Kontsevich and C. W. Tyler, “Bayesian adaptive estimation of psychometric slope and threshold,” Vision Res. 39, 2729–2737 (1999).
[Crossref]

E. Kampmeier, “Die neue Airwear–Brillenglasgeneration - Einfluss der chromatischen Aberration auf die Sehschärfe,” Optometrie 1, 10–12 (1999).

R. S. Anderson and F. A. Ennis, “Foveal and peripheral thresholds for detection and resolution of vanishing optotype tumbling E’s,” Vision Res. 39, 4141–4144 (1999).
[Crossref]

J. Faubert, P. Simonet, and J. Gresset, “Effects of induced transverse chromatic aberration from an afocal prismatic lens on spatio-temporal sensitivity,” Ophthalmic Physiol. Opt. 19, 336–346 (1999).
[Crossref]

1998 (1)

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[Crossref]

1997 (1)

D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vision 10, 433–436 (1997).
[Crossref]

1996 (2)

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[Crossref]

1995 (3)

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995).
[Crossref]

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[Crossref]

C. M. R. Fonseka and H. Obstfeld, “Effect of the constringence of afocal prismatic lenses on monocular acuity and contrast sensitivity,” Ophthalmic Physiol. Opt. 15, 73–78 (1995).
[Crossref]

1992 (1)

C. Y. Tang and W. N. Charman, “Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear,” Ophthalmic Physiol. Opt. 12, 340–349 (1992).
[Crossref]

1990 (4)

C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300, 5–25 (1990).
[Crossref]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of the ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[Crossref]

P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[Crossref]

1988 (1)

D. Meslin and G. Obrecht, “Effect of chromatic dispersion of a lens on visual acuity,” Am. J. Optom. Physiol. Opt. 65, 25–28 (1988).
[Crossref]

1987 (4)

1967 (1)

F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
[Crossref]

Allen, K. A.

C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300, 5–25 (1990).
[Crossref]

Anderson, R. S.

R. S. Anderson and F. A. Ennis, “Foveal and peripheral thresholds for detection and resolution of vanishing optotype tumbling E’s,” Vision Res. 39, 4141–4144 (1999).
[Crossref]

Artal, P.

B. Jaeken, L. Lundström, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[Crossref]

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[Crossref]

Ayala, D. B.

Bedell, H. E.

Bradley, A.

F. E. Cheney, L. N. Thibos, and A. Bradley, “Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision,” Ophthalmic Physiol. Opt. 35, 70–80 (2015).
[Crossref]

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of the ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[Crossref]

Brainard, D. H.

D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vision 10, 433–436 (1997).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[Crossref]

Burns, S. A.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]

Campbell, F. W.

F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
[Crossref]

Campbell, M. C. W.

P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[Crossref]

Charman, W. N.

C. Y. Tang and W. N. Charman, “Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear,” Ophthalmic Physiol. Opt. 12, 340–349 (1992).
[Crossref]

A. El-Kadouri and W. N. Charman, “Chromatic aberration in prismatic corrections,” in Transactions of the First International Congress, The Frontiers of Optometry (British College of Ophthalmic Opticians,1984), Vol. 2, pp. 154–160.

Cheney, F. E.

F. E. Cheney, L. N. Thibos, and A. Bradley, “Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision,” Ophthalmic Physiol. Opt. 35, 70–80 (2015).
[Crossref]

L. N. Thibos, D. J. Walsh, and F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987).
[Crossref]

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
[Crossref]

Chisholm, W.

Colombo, E.

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[Crossref]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref]

C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300, 5–25 (1990).
[Crossref]

Derrington, A. M.

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[Crossref]

El-Kadouri, A.

A. El-Kadouri and W. N. Charman, “Chromatic aberration in prismatic corrections,” in Transactions of the First International Congress, The Frontiers of Optometry (British College of Ophthalmic Opticians,1984), Vol. 2, pp. 154–160.

Ennis, F. A.

R. S. Anderson and F. A. Ennis, “Foveal and peripheral thresholds for detection and resolution of vanishing optotype tumbling E’s,” Vision Res. 39, 4141–4144 (1999).
[Crossref]

Faubert, J.

J. Faubert, P. Simonet, and J. Gresset, “Effects of induced transverse chromatic aberration from an afocal prismatic lens on spatio-temporal sensitivity,” Ophthalmic Physiol. Opt. 19, 336–346 (1999).
[Crossref]

Fonseka, C. M. R.

C. M. R. Fonseka and H. Obstfeld, “Effect of the constringence of afocal prismatic lenses on monocular acuity and contrast sensitivity,” Ophthalmic Physiol. Opt. 15, 73–78 (1995).
[Crossref]

Gorceix, N.

Gresset, J.

J. Faubert, P. Simonet, and J. Gresset, “Effects of induced transverse chromatic aberration from an afocal prismatic lens on spatio-temporal sensitivity,” Ophthalmic Physiol. Opt. 19, 336–346 (1999).
[Crossref]

Gubisch, R. W.

F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
[Crossref]

Gustafsson, J.

L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vision Sci. 84, 1046–1052 (2007).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
[Crossref]

J. Gustafsson and P. Unsbo, “Eccentric correction for off-axis vision in central visual field loss,” Optom. Vision Sci. 80, 535–541 (2003).
[Crossref]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of the ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[Crossref]

Jaeken, B.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref]

Kampmeier, E.

E. Kampmeier, “Die neue Airwear–Brillenglasgeneration - Einfluss der chromatischen Aberration auf die Sehschärfe,” Optometrie 1, 10–12 (1999).

Kontsevich, L. L.

L. L. Kontsevich and C. W. Tyler, “Bayesian adaptive estimation of psychometric slope and threshold,” Vision Res. 39, 2729–2737 (1999).
[Crossref]

Lidkea, B.

Losada, M. A.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[Crossref]

Lundström, L.

R. Rosén, L. Lundström, and P. Unsbo, “Adaptive optics for peripheral vision,” J. Mod. Opt. 59, 1064–1070 (2012).
[Crossref]

B. Jaeken, L. Lundström, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
[Crossref]

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52, 318–323 (2011).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vision Sci. 84, 1046–1052 (2007).
[Crossref]

Manzanera, S.

Marcos, S.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]

McMahon, M. J.

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[Crossref]

Meslin, D.

D. Meslin and G. Obrecht, “Effect of chromatic dispersion of a lens on visual acuity,” Am. J. Optom. Physiol. Opt. 65, 25–28 (1988).
[Crossref]

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]

Navarro, R.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[Crossref]

Obrecht, G.

D. Meslin and G. Obrecht, “Effect of chromatic dispersion of a lens on visual acuity,” Am. J. Optom. Physiol. Opt. 65, 25–28 (1988).
[Crossref]

Obstfeld, H.

C. M. R. Fonseka and H. Obstfeld, “Effect of the constringence of afocal prismatic lenses on monocular acuity and contrast sensitivity,” Ophthalmic Physiol. Opt. 15, 73–78 (1995).
[Crossref]

Ogboso, Y. U.

Prieto, P. M.

Rosén, R.

R. Rosén, L. Lundström, and P. Unsbo, “Adaptive optics for peripheral vision,” J. Mod. Opt. 59, 1064–1070 (2012).
[Crossref]

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52, 318–323 (2011).
[Crossref]

Rynders, M.

Rynders, M. C.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[Crossref]

Simonet, P.

J. Faubert, P. Simonet, and J. Gresset, “Effects of induced transverse chromatic aberration from an afocal prismatic lens on spatio-temporal sensitivity,” Ophthalmic Physiol. Opt. 19, 336–346 (1999).
[Crossref]

P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[Crossref]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref]

Smith, E. L.

E. L. Smith, “Prentice award lecture 2010: a case for peripheral optical treatment strategies for myopia,” Optom. Vis. Sci. 88, 1029–1044 (2011).
[Crossref]

Still, D. L.

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of the ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[Crossref]

Tang, C. Y.

C. Y. Tang and W. N. Charman, “Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear,” Ophthalmic Physiol. Opt. 12, 340–349 (1992).
[Crossref]

Thibos, L. N.

F. E. Cheney, L. N. Thibos, and A. Bradley, “Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision,” Ophthalmic Physiol. Opt. 35, 70–80 (2015).
[Crossref]

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
[Crossref]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of the ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[Crossref]

L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
[Crossref]

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
[Crossref]

L. N. Thibos, D. J. Walsh, and F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987).
[Crossref]

Tyler, C. W.

L. L. Kontsevich and C. W. Tyler, “Bayesian adaptive estimation of psychometric slope and threshold,” Vision Res. 39, 2729–2737 (1999).
[Crossref]

Unsbo, P.

R. Rosén, L. Lundström, and P. Unsbo, “Adaptive optics for peripheral vision,” J. Mod. Opt. 59, 1064–1070 (2012).
[Crossref]

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52, 318–323 (2011).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vision Sci. 84, 1046–1052 (2007).
[Crossref]

J. Gustafsson and P. Unsbo, “Eccentric correction for off-axis vision in central visual field loss,” Optom. Vision Sci. 80, 535–541 (2003).
[Crossref]

Wallman, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[Crossref]

Walsh, D. J.

L. N. Thibos, D. J. Walsh, and F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987).
[Crossref]

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
[Crossref]

Williams, D. R.

G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[Crossref]

Winawer, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[Crossref]

Yoon, G. Y.

Zhang, X.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of the ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[Crossref]

Am. J. Optom. Physiol. Opt. (1)

D. Meslin and G. Obrecht, “Effect of chromatic dispersion of a lens on visual acuity,” Am. J. Optom. Physiol. Opt. 65, 25–28 (1988).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52, 318–323 (2011).
[Crossref]

J. Comp. Neurol. (2)

C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300, 5–25 (1990).
[Crossref]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref]

J. Mod. Opt. (1)

R. Rosén, L. Lundström, and P. Unsbo, “Adaptive optics for peripheral vision,” J. Mod. Opt. 59, 1064–1070 (2012).
[Crossref]

J. Opt. Soc. Am. A (6)

J. Physiol. (1)

F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
[Crossref]

Neuron (1)

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[Crossref]

Ophthalmic Physiol. Opt. (4)

F. E. Cheney, L. N. Thibos, and A. Bradley, “Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision,” Ophthalmic Physiol. Opt. 35, 70–80 (2015).
[Crossref]

C. Y. Tang and W. N. Charman, “Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear,” Ophthalmic Physiol. Opt. 12, 340–349 (1992).
[Crossref]

C. M. R. Fonseka and H. Obstfeld, “Effect of the constringence of afocal prismatic lenses on monocular acuity and contrast sensitivity,” Ophthalmic Physiol. Opt. 15, 73–78 (1995).
[Crossref]

J. Faubert, P. Simonet, and J. Gresset, “Effects of induced transverse chromatic aberration from an afocal prismatic lens on spatio-temporal sensitivity,” Ophthalmic Physiol. Opt. 19, 336–346 (1999).
[Crossref]

Opt. Express (1)

Optom. Vis. Sci. (1)

E. L. Smith, “Prentice award lecture 2010: a case for peripheral optical treatment strategies for myopia,” Optom. Vis. Sci. 88, 1029–1044 (2011).
[Crossref]

Optom. Vision Sci. (2)

J. Gustafsson and P. Unsbo, “Eccentric correction for off-axis vision in central visual field loss,” Optom. Vision Sci. 80, 535–541 (2003).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vision Sci. 84, 1046–1052 (2007).
[Crossref]

Optometrie (1)

E. Kampmeier, “Die neue Airwear–Brillenglasgeneration - Einfluss der chromatischen Aberration auf die Sehschärfe,” Optometrie 1, 10–12 (1999).

Spatial Vision (1)

D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vision 10, 433–436 (1997).
[Crossref]

Vision Res. (10)

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[Crossref]

L. N. Thibos, D. J. Walsh, and F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987).
[Crossref]

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[Crossref]

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
[Crossref]

R. S. Anderson and F. A. Ennis, “Foveal and peripheral thresholds for detection and resolution of vanishing optotype tumbling E’s,” Vision Res. 39, 4141–4144 (1999).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of the ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[Crossref]

P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]

L. L. Kontsevich and C. W. Tyler, “Bayesian adaptive estimation of psychometric slope and threshold,” Vision Res. 39, 2729–2737 (1999).
[Crossref]

Other (2)

A. El-Kadouri and W. N. Charman, “Chromatic aberration in prismatic corrections,” in Transactions of the First International Congress, The Frontiers of Optometry (British College of Ophthalmic Opticians,1984), Vol. 2, pp. 154–160.

This number was obtained by assuming a thin lens located 14 mm in front of the eye. Light that reaches the eye in 20° off axis is entering the lens 5 mm away from the optical center. In this location, the lens will give a prismatic effect of 5  Δ. If the lens is made of high dispersive material, such as the prisms in this study, 5  Δ is equivalent to inducing about 2.5 arcmin of TCA, which translates into 0.14 logMAR (2.5  arcmin*0.057  logMAR/arcmin).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Measurement setup for studying the effect of prism-induced transverse chromatic aberration (TCA) in the right eye (schematic illustration seen from above). The stimuli were seen via an adaptive optics (AO) system that compensated for monochromatic aberrations [24]. Peripheral detection acuity was measured with an external fixation target (a), and foveal resolution acuity with an occluded left eye (b).
Fig. 2.
Fig. 2. Spectrum of the calibrated CRT screen with the three RGB color channels shown (R, solid; G, dashed; and B, dotted line). The magnitude of induced TCA will depend on the applied combination of stimulus spectrum, spectral sensitivity of the eye, and prismatic power.
Fig. 3.
Fig. 3. Stimulus for the foveal Vernier alignment method. The task of the subject is to move the black bars in the center red square until they appear aligned with the horizontal and vertical lines on the surrounding blue background. From the remaining displacement of the bars, the magnitude of induced TCA can be calculated. The stimulus is viewed from a distance of 2.6 m, and the bars are moved with a step size of 0.23 mm (corresponding to about 0.3 arcmin).
Fig. 4.
Fig. 4. Foveal TCA (red triangles) in arcmin induced by trial lenses with varying prismatic power ( V d = 32 and refractive index n d = 1.67 ) shown for four subjects. The control (blue crosses) shows the induced TCA in the direction perpendicular to the prismatic gradient. The markers denote individual measurement values, and the lines are linear fits of those values. The average magnitude of induced TCA is 0.49 ± 0.03 arcmin / Δ .
Fig. 5.
Fig. 5. Grating resolution acuity in logMAR in the fovea measured over induced prism power shown for four subjects. The black line shows the least square fit of the pooled data of the three measurement series (blue diamonds, red triangles, and green circles), and the error bars represent the standard deviations of the psychometric function for the individual series. The individual fit coefficients are given in Table 1.
Fig. 6.
Fig. 6. Grating detection acuity in logMAR in 20° nasal visual field measured over induced prism power shown for four subjects. The magenta line shows the least square fit of the pooled data of the three measurement series (blue diamonds, red triangles, and green circles), and the error bars represent the standard deviations of the psychometric function for the individual series. The individual fit coefficients are given in Table 1.
Fig. 7.
Fig. 7. Grating detection acuity in 20° nasal visual field (upper purple lines) and grating resolution acuity in the fovea (lower black lines) as a function of induced TCA in arcmin, shown for four subjects: diamonds (S1), triangles up (S2), triangles down (S3), and circles (S4); note that these markers are not representing any data points, but merely used to distinguish between subjects. Here, the grating acuity measurements (Figs. 5 and 6) are combined with the magnitude of induced TCA (Fig. 4). The average peripheral sensitivity to base in (BI) induced TCA is 0.057 ± 0.012 logMAR / arcmin compared to 0.032 ± 0.005 logMAR / arcmin in the fovea.

Tables (1)

Tables Icon

Table 1. Individual Fitting Parameters of the V-Shaped Function to Describe the Effect of Prism-Induced TCA on Foveal and Peripheral Visual Acuity for Four Subjects (S1-S4) a

Metrics